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Abstract. We consider estimation problems, in which the estimand, X, and observation, Y ,
take values in measurable spaces. Regular conditional versions of the forward and inverse Bayes
formula are shown to have dual variational characterisations involving the minimisation of an ap-
parent information, and the maximisation of a compatible information. These both have natural
information theoretic interpretations, according to which Bayes’ formula and its inverse are optimal
information processors. The variational characterisation of the forward formula has the same form
as that of Gibbs measures in statistical mechanics. The special case in which X and Y are diffusion
processes governed by stochastic differential equations is examined in detail. The minimisation of
apparent information can then be formulated as a stochastic optimal control problem, with cost that
is quadratic in both the control and observation fit. The dual problem can be formulated in terms of
infinite-dimensional deterministic optimal control. Local versions of the variational characterisations
are developed, which quantify information flow in the estimators. In this context, the information
conserving property of Bayesian estimators coincides with the Davis-Varaiya martingale stochastic
dynamic programming principle.
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1. Introduction. This article investigates a variational formulation of Bayesian
estimation with a natural information theoretic interpretation. The two ‘directions’
of an abstract Bayes formula (likelihood function to posterior distribution and vice-
versa) are given variational representations. The forward representation involves the
minimisation of an apparent information of probability measures on the space of the
estimand. This apparent information is made up of two parts: the information gain
of the measure over the prior distribution for the estimand, and a residual term
representing the information value of the observation, complementary to this. The
apparent information of probability measures is greater than or equal to the total
information in the observation, with equality if and only if the measure is the posterior
distribution of the estimand. Thus the (forward) Bayes formula can be thought of as
an optimal ‘information processor’, in that it balances input and output information.
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Sub-optimal processors appear to have access to more information than that in the
observation. The variational representation of the inverse Bayes formula involves
the maximisation of a compatible information of likelihood functions on the space
of the estimand. This is defined to be the difference between the information in an
unspecified observation associated with the likelihood function, and that part of this
information complementary to the (given) posterior distribution. The compatible
information of likelihood functions is less than or equal to the information gain of
the posterior distribution over the prior, with equality if and only if the likelihood
function is equivalent to that provided by the inverse Bayes formula. Once again,
the inverse Bayes formula can be thought of as an optimal processor, balancing input
and output information. However, in this case, rather than appearing to have an
additional source of information, sub-optimal processors lose (or fail to make use of)
part of the input information.

In Section 2, the estimand, X, and the observation, Y , of the Bayesian problem are
supposed to take values in Borel spaces (X,X ) and (Y,Y), respectively. The starting
point is a ‘regular conditional’ version of the Bayes formula. In Section 3, the results
are specialised to the estimation of diffusion processes with partial observations. In
that context, the regular conditional probability distribution can be chosen to be
continuous in the observations. It also has the key property of being Markovian. This
means that the family of measures over which apparent information is minimised can
be restricted to the distributions of the process X when a ‘finite energy’, feedback
control is applied through the drift coefficient. Thus, in this case, the minimisation of
apparent information can be interpreted in terms of a problem in stochastic optimal
control. This is explored in Section 4.

The dual variational problem for diffusion processes is developed in Section 5.
One interpretation of it is as a problem in infinite-dimensional deterministic optimal
control. The optimal trajectory of the dual problem is a ‘likelihood filter’ for the
process X in reversed time, from which the corresponding nonlinear filter can be
found. This gives new interpretation to a connection between an optimal control
problem in one time direction and a nonlinear filter in the other, which was made
for non-degenerate diffusions in [6] via the Hopf transformation, and used to give
existence and uniqueness results for the unnormalised conditional density equation
with unbounded observations. The results of Sections 3 to 5 are established under
fairly weak conditions. In particular, they include the case of degenerate diffusions.

In the context of estimators for diffusion processes, there is a ‘local’ version of
the variational formulations, which characterises flow rates of information, and shows
that Bayesian processors are conservative in the sense that they balance input and
output flow rates. This is the subject of Section 6.

A variational representation of the Fokker-Planck equation for diffusion processes
is discussed in [10]. This involves the minimisation of the ‘energy’ of drift coefficients
over those that give rise to a particular set of marginal densities. There, as here,
the modification of the drift coefficient can be interpreted as the application of a
control term, which re-expresses the variational problem as one in optimal control.
The two problems are somewhat different though. In particular, the controls admitted
in [10] give rise to mutually singular transition probabilities, which are certainly not
permitted in the present context.

A preliminary account of some of the results herein was reported in [11].

2. A Variational Formulation of Bayesian Estimation. Let (Ω,F , P ) be a
probability space, (X,X ) and (Y,Y) Borel spaces, and X : Ω → X and Y : Ω → Y
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measurable mappings with distributions PX , PY and PXY on X , Y and X × Y,
respectively. Suppose that:

(H1) there exists a σ-finite (reference) measure, λY , on Y such that PXY � PX ⊗
λY . (This could be PY itself.)
Let Q : X × Y → [0,∞) be a version of the associated Radon-Nikodym derivative,
and

Ȳ =
{

y ∈ Y : 0 <

∫
X

Q(x, y)PX(dx) < ∞
}

;(2.1)

then Ȳ ∈ Y and PY (Ȳ) = 1. Let H : X × Y → (−∞,+∞] be defined by

H(x, y) = − log(Q(x, y)) if y ∈ Ȳ
(2.2)

0 otherwise :

then PX|Y : X × Y → [0, 1], defined by

PX|Y (A, y) =

∫
A

exp(−H(x, y))PX(dx)∫
X

exp(−H(x, y))PX(dx)
,(2.3)

is a regular conditional probability distribution for X given Y ; i.e.
PX|Y ( · , y) is a probability measure on X for each y,
PX|Y (A, · ) is Y-measurable for each A, and
PX|Y (A, Y ) = P (X ∈ A |Y ) a.s.

Equations (2.1)–(2.3) constitute an ‘outcome-by-outcome’ abstract Bayes formula,
yielding a posterior probability distribution for X for each outcome of Y . Of course,
for any y belonging to a set of PY -measure zero, PX|Y ( · , y) depends on the choice
of version of the Radon-Nikodym derivative Q. However, in particular examples, we
can often find a version such that PX|Y (A, · ) is continuous for each A ∈ X .

Let P(X ) be the set of probability measures on (X,X ), and H(X) the set of
(−∞,+∞]-valued, measurable functions on the same space. For P̃X , P̂X ∈ P(X ) and
H̃ ∈ H(X), we define

h(P̃X | P̂X) =
∫
X

log

(
dP̃X

dP̂X

)
dP̃X if P̃X � P̂X and the integral exists

(2.4)
+∞ otherwise,

i(H̃) = − log
(∫

X

exp(−H̃)dPX

)
if 0 <

∫
X

exp(−H̃)dPX < ∞
(2.5)

−∞ otherwise,

〈H̃, P̃X〉 =
∫
X

H̃dP̃X if the integral exists
(2.6)

+∞ otherwise.

It is well known that the relative entropy h(P̃X | P̂X) can be interpreted as the in-
formation gain of the probability measure P̃X over P̂X . In fact, any version of
− log(dP̃X/dP̂X) is a generalisation of the Shannon information for X. For almost all
x, it is a measure of the ‘relative degree of surprise’ in the outcome X = x for the two
distributions P̃X and P̂X . Thus, h(P̃X | P̂X) is the average reduction in the degree of
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surprise in this outcome arising from the acceptance of P̃X as the distribution for X,
rather than P̂X .

If we interpret exp(−H̃) as a likelihood function for X, associated with some
(unspecified) observation, then H̃(x) is the ‘residual degree of surprise’ in that obser-
vation if we already know that X = x, and i(H̃) is the ‘total degree of surprise’ in that
observation, i.e. the information in the unspecified observation if all we know about
X is its prior PX . In what follows we shall call H̃(X) the X-conditional information
in the unspecified observation, and i(H̃) the information in that observation. (Of
course, H(X, y) and, respectively, i(H( · , y)) are the X-conditional information and,
respectively, information in the observation that Y = y.)

Proposition 2.1. Suppose that (H1) is satisfied, and H and PX|Y are as defined
above. Then for any y such that

−
∫
X

H(x, y) exp(−H(x, y))PX(dx) < ∞, (where + ∞ exp(−∞) = 0) :(2.7)

(i)

i(H( · , y)) = min
P̃X∈P(X )

{
h(P̃X |PX) + 〈H( · , y), P̃X〉

}
;(2.8)

(ii)

h(PX|Y ( · , y) |PX) = max
H̃∈H(X)

{
i(H̃) − 〈H̃, PX|Y ( · , y)〉

}
;(2.9)

(iii) PX|Y ( · , y) is the unique minimiser in (2.8);
(iv) if H∗ is a maximiser in (2.9), then there exists a real constant K such that

H∗(X) = H(X, y) + K a.s.

Proof. If y ∈ Ȳ and (2.7) holds then h(PX|Y ( · , y) |PX) < ∞, i(H( · , y)) > −∞
and H( · , y) ∈ L1(PX|Y ( · , y)). This is also true if y /∈ Ȳ since, in that case, H( · , y) =
0 and PX|Y ( · , y) = PX . Thus, it is clear that the minimum in (2.8) is less than +∞,
and the maximum in (2.9) is greater than −∞.

Suppose that, for P̃X ∈ P(X ), h(P̃X |PX) < ∞ and H( · , y) ∈ L1(P̃X). It readily
follows that P̃X � PX|Y ( · , y), so that

h(P̃X |PX) =
∫
X

(
log

(
dP̃X

dPX|Y
(x, y)

)
+ log

(
dPX|Y
dPX

(x, y)
))

P̃X(dx),

and

h(P̃X |PX) + 〈H( · , y), P̃X〉 = i(H( · , y)) + h(P̃X |PX|Y ( · , y)).(2.10)

It is easy to show that, for any P̃X ∈ P(X ), the relative entropy functional h( · | P̃X)
is non-negative, evaluates to zero at P̃X , and is strictly convex on the subset of P(X )
for which it is finite. This establishes parts (i) and (iii).

Suppose now that, for H̃ ∈ H(X), i(H̃) > −∞ and H̃ ∈ L1(PX|Y ( · , y)). Let P̃X

be defined by (2.3) with H̃ replacing H( · , y). It readily follows that PX|Y ( · , y) � P̃X ,
4



and so

i(H̃) − H̃(X) = log

(
dP̃X

dPX
(X)

)

= log
(

dPX|Y
dPX

(X, y)
)
− log

(
dPX|Y

dP̃X

(X, y)
)

.

Thus

i(H̃) − 〈H̃, PX|Y ( · , y)〉 = h(PX|Y ( · , y) |PX) − h(PX|Y ( · , y) | P̃X).(2.11)

Suppose that there is a set A ∈ X , for which PX|Y (A, y) = 0 but P̃X(A) > 0. Let P̃ ′
X

be defined by

P̃ ′
X(B) =

(
P̃X(AC)

)−1

P̃X(AC ∩ B) for all B ∈ X .

Then h(PX|Y ( · , y) | P̃ ′
X) < h(PX|Y ( · , y) | P̃X), and so any maximiser in (2.11) must

be absolutely continuous with respect to PX|Y ( · , y). It is easy to show that, for any
P̃X ∈ P(X ), the relative entropy functional h(P̃X | · ) is non-negative, evaluates to
zero at P̃X , and is strictly convex on the subset of P(X ) consisting of measures that
are absolutely continuous with respect to P̃X . This establishes parts (ii) and (iv).
Remark 1. If the mutual information between X and Y is finite,∫

X×Y

log
(

dPXY

d(PX ⊗ PY )

)
dPXY < ∞,(2.12)

then there exists a version of Q for which (2.7) is satisfied for all y.
Remark 2. Proposition 2.1 is a special case of an energy-entropy duality that plays
a major role in statistical physics and in the theory of large deviations. More general
results of this nature are widely available in the literature. (See, for example, [5].)
Our aim in this section is to provide an information-theoretic interpretation of the
result in the Bayesian context. The simple proof we provide here makes use of the
special nature of that context.

Parts (i) and (ii) of Proposition 2.1 both concern the processing of information
over and above that in the prior PX . In part (i), the source of additional information
is the observation that Y = y. The abstract Bayes formula extracts the part of this
information pertinent to X, h(PX|Y ( · , y) |PX), and leaves the residual information,
〈H( · , y), PX|Y ( · , y)〉. One can think of the input information as being held in the
likelihood function, exp(−H( · , y)), and the extracted information as being held in the
distribution, PX|Y ( · , y). An arbitrary estimation procedure that postulates P̃X as a
‘post-observation’ distribution for X, appears to have access to additional information,
in that it yields an information gain on X of h(P̃X |PX), and a residual information of
〈H( · , y), P̃X〉. The sum of these two terms (the term in brackets on the right-hand side
of (2.8)) is strictly greater than the actual information available, i(H( · , y)), unless
P̃X = PX|Y ( · , y). We shall call it the apparent information of the estimator P̃X .
(Implicit in the interpretation of h(P̃X |PX) as an information gain, is the assumption
that P̃X represents a rational belief about X given the prior and some additional
knowledge, such as an observation.)

In part (ii), the source of additional information is the posterior distribution,
PX|Y ( · , y). The aim now is to postulate an observation (with likelihood function
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exp(−H̃)), which would give rise to this distribution. The input information here,
h(PX|Y ( · , y) |PX), is merged with the residual information of the postulated observa-
tion, 〈H̃, PX|Y ( · , y)〉, and the result is greater than or equal to the total information
in the postulated observation, i(H̃), with equality if and only if the observation is
compatible with PX|Y ( · , y) in the sense of part (iv) of the proposition. The term in
brackets on the right-hand side of (2.9) can be thought of as that part of the informa-
tion in the postulated observation compatible with PX|Y ( · , y). We shall call it the
compatible information of the likelihood function exp(−H̃). Another interpretation
is that the input information, h(PX|Y ( · , y) |PX), is processed to produce compati-
ble information resulting in a net loss of information except when the processor is
optimal.

Throughout the rest of the paper, the apparent information and compatible in-
formation will be denoted by F (P̃X , y) and G(H̃, y), i.e.

F (P̃X , y) = h(P̃X |PX) + 〈H( · , y), P̃X〉,(2.13)
G(H̃, y) = i(H̃) − 〈H̃, PX|Y ( · , y)〉.(2.14)

As equations (2.10) and (2.11) show, the minimisation of F is equivalent to the min-
imisation of the information excess of the estimator P̃X , h(P̃X |PX|Y ( · , y)), and the
maximisation of G is equivalent to the minimisation of the information deficit of the
likelihood function exp(−H̃), h(PX|Y ( · , y) | P̃X). In fact (as was pointed out by an
anonymous referee), these interpretations still hold in the absence of (2.7). However,
in not identifying the source information or the extracted information, they do not
show the information processing aspects of Bayesian estimation in quite the same way
as the quantities F and G. Moreover, F and G make clear the compromises involved
in Bayesian estimation. Part (i) of the proposition shows how PX|Y ( · , y) compromises
between being close to the prior PX and fitting with the observation Y = y, whereas
part (ii) shows how H( · , y) (or its equivalents) compromise between holding a lot of
information but not too much residual information.

Of course it is possible to give other variational characterisations of PX|Y ( · , y).
For example, one could consider it as the minimiser of the total variation norm of the
difference measure P̃X − PX|Y ( · , y). However, such characterisations lack the infor-
mation theoretic interpretation discussed above: F and G are natural error measures
for sub-optimal estimation procedures. The characterisation (2.8) could be used as a
basis for approximations. For example, we may wish to approximate a posterior dis-
tribution by a discrete law on a finite partition of X. The size of the partition may be
fixed, but we may be able to choose the law and the details of the partition by means
of a finite number of parameters. The characterisation (2.8) could form the basis of
an optimisation with respect to this set of parameters. Similarly, the characterisation
(2.9) could be used as a basis for the study of modelling errors, in that it shows the
information loss arising from the use of an incorrect likelihood function. Since the use
of an incorrect prior, P e

X (with P e
X � PX), with a Bayesian procedure is equivalent

to the use of the incorrect likelihood function

exp(−He( · , y)) = exp(−H( · , y))
dP e

X

dPX
,

(2.9), with H̃ = He( · , y), also shows the information loss arising through the use
of an incorrect prior. Furthermore, if there were any uncertainty in the likelihood
function or the prior, the resulting information loss could be studied by means of
game theoretic methods.

6



Proposition 2.1 is an instance of a Legendre-type transform between the relative
entropy of probability measures and the logarithm of the exponential moment of real-
valued random variables. A similar transform occurs in the characterisation of Gibbs
measures in statistical mechanics, [8]. In that context, (X,X ) is the configuration
space of a physical system (the cartesian product of a number, N , of identical spaces),
H is a Hamiltonian representing the energies of the configurations, and F is the free
energy of the probability measure P̃X with respect to the reference measure PX and H.
A Gibbs measure represents a thermodynamic state of the system in thermodynamic
equilibrium. If N is finite then there is only one Gibbs measure, and it takes the
form (2.3). Gibbs theory comes into its full richness only when N is infinite, in which
case there may be multiple Gibbs measures and formulae such as (2.3) are no longer
appropriate. However, variational characterisations are. We note that the Bayesian
estimator can be seen to compromise between being close to the prior and fitting with
the observation in exactly the same way that a thermodynamic system in equilibrium
compromises between maximising entropy and minimising average energy.

3. Path Estimators. The techniques of Section 2 are specialised here for the
case in which the estimand, X, and observation, Y , are, respectively, continuous IRn-
and IRd-valued processes governed by the following Itô integral equations:

Xt = X0 +
∫ t

0

b(Xs, s) ds +
∫ t

0

σ(Xs, s) dVs, for 0 ≤ t ≤ T,

(3.1)
X0 ∼ µ,

Yt =
∫ t

0

g(Xs) ds + Wt for 0 ≤ t ≤ T,(3.2)

where Xt, Vt ∈ IRn, µ is a law on (IRn,Bn), Yt, Wt ∈ IRd, and b, σ and g are measur-
able mappings. Under suitable regularity conditions, these equations will be unique
in law and have a weak solution (Ω,F , (Ft), P, (V, W ), (X, Y )); i.e. a filtered prob-
ability space supporting an (n + d)-dimensional Brownian motion (V, W ) and an
(n + d)-dimensional semimartingale (X, Y ) such that (3.1) and (3.2) are satisfied for
all t. The abstract spaces (X,X ) and (Y,Y) of Section 2 now become the spaces
(C([0, T ]; IRn),BT ) and (C([0, T ]; IRd),BT ) of continuous functions, topologised by
the uniform norm. We continue to use the notation (X,X ) and (Y,Y), though, for
the sake of brevity.

Let λY be Wiener measure on (Y,Y). Under suitable conditions on µ, b, σ and g,
we might expect (H1) to be satisfied and the mutual information, E log(dPXY /d(PX⊗
λY )(X, Y )), to be finite. This will allow us to proceed as in Section 2 to construct
a function H on X × Y , and a corresponding regular conditional probability, PX|Y ,
such that (2.7) holds for all y. Furthermore, if we can show that PX|Y ( · , y) ∼ PX ,
then we shall be able to construct a continuous, strictly positive martingale My on Ω
such that

My,t = E
(

dPX|Y ( · , y)
dPX

(X)
∣∣∣∣FX

t

)
for 0 ≤ t ≤ T,

where (FX
t ) is the filtration generated by the process X. It will then follow from the

Cameron-Martin-Girsanov theory that

My,t = My,0 exp
(∫ t

0

U ′
y,s (dXs − b(Xs, s) ds) − 1

2

∫ t

0

|σ(Xs, s)′Uy,s|2 ds

)
(3.3)
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for some progressively measurable, IRn-valued process Uy. PX|Y ( · , y) will then be
the distribution of a controlled process, Xy, satisfying an equation like (3.1), but
with a different initial law, and with a control term, σσ′(Xs, s)Uy,s, entering the
drift coefficient. The use of the progressively measurable control Ũ instead of Uy

will result in a process X̃ having a distribution whose apparent information relative
to (PX , H( · , y)) is greater than or equal to that of Xy. Thus, at least in part, the
variational characterisation of Section 2 will become a problem in stochastic optimal
control.

We might also expect PX|Y ( · , y) to be Markov (at least for almost all y), in which
case it will be appropriate to restrict admissible controls, Ũ to feedback controls of the
form u(X̃t, t). It should also then be possible to define regular conditional transition
probabilities for PX|Y . With this in mind, let (χt, 0 ≤ t ≤ T ) be the co-ordinate
process on X, and

X t
s = σ(χr, s ≤ r ≤ t) for 0 ≤ s ≤ t ≤ T.(3.4)

We should be able to construct regular conditional probabilities

P s+
X|Y : X T

s × IRn × C([s, T ]; IRd) → [0, 1]

such that, for all A ∈ X T
s ,

PX|Y (A, y) =
∫

Rn

P s+
X|Y (A, z, (yt − ys, s ≤ t ≤ T ))PX|Y (χ−1

s (dz), y).(3.5)

These will have variational characterisations in terms of the corresponding regular
conditional probabilities for the prior, PX , and appropriately constructed likelihood
functions. This will lead towards a localised version of the results of Section 2.

In what follows, we develop the above ideas in a rigorous manner. We do this
by placing constraints on b and σ such that (3.1) has a strong solution, and then use
the techniques of stochastic flows. This has the advantage that we are able to include
problems with degenerate diffusion coefficients, which are important in many areas
of application. (In fact our approach also applies to some problems not satisfying a
hypoellipticity condition.)

The constraints we place on µ, b, σ and g also fit well with Clark’s robustness ideas
(see [2]). These lead to an explicit function H and corresponding regular conditional
probability, PX|Y , that is Markov for every y. They also admit unbounded observation
functions g, which are needed in the linear case.

We suppose that µ, b, σ and g satisfy the following technical conditions:
(H2) there exists an ε > 0 such that∫

IRn

exp
(
ε|z|2

)
µ(dz) < ∞;

(H3) σ is bounded, and b and σ are uniformly Lipschitz continuous on compact
sets and differentiable with respect to the components of z, the derivatives being
continuous and bounded;

(H4) g has continuous first, second and third derivatives, and there exist C < ∞
and α < ∞ such that for all z ∈ IRn

∑
i

∣∣∣∣ ∂g

∂zi
(z)

∣∣∣∣ ≤ C
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∑
i,j

∣∣∣∣ ∂2g

∂zi∂zj
(z)

∣∣∣∣ ≤ C(1 + |z|)

and
∑
i,j,k

∣∣∣∣ ∂3g

∂zi∂zj∂zk
(z)

∣∣∣∣ ≤ C(1 + |z|α).

It follows from (H3) that (3.1) has a strong solution Φ : IRn × Y → X, so that
on the probability space (Ω,F , (Ft), P, X0, (V, W )) supporting an IRn-valued random
variable X0 with distribution µ, and (n + d)-dimensional vector Brownian motion
(V, W ), independent of X0, (Xt = Φt(X0, V ),Ft; 0 ≤ t ≤ T ) is a continuous semi-
martingale satisfying (3.1). (See, for example, [15].)

It follows from (H2)–(H4) that E
∫ T

0
|g(Xt)|2 dt < ∞, and from this and the

independence of X and W it follows by standard results (see, for example, [9]) that
(H1) is satisfied when the reference measure λY is Wiener measure, and the Radon-
Nikodym derivative takes the form:

dPXY

d(PX ⊗ λY )
(X, Y ) = exp

(∫ T

0

g(Xt)′ dYt −
1

2

∫ T

0

|g(Xt)|2 dt

)
.(3.6)

In order to develop the representations of Proposition 2.1 we first need a version of
this that is well defined for all y. Under (H2)–(H4) the process (g(Xt),Ft, 0 ≤ t ≤ T )
is a semimartingale, and so it is possible to ‘integrate by parts’ in (3.6) and define Q
as any measurable function such that, for each y,

Q(X, y) = exp

(
y′

T g(XT ) −
∫ T

0

y′
t dg(Xt) −

1

2

∫ T

0

|g(Xt)|2 dt

)
.(3.7)

(See [2] and [3].) It can also be shown (see, for example, [13], [14]) that the resulting
regular conditional probability, PX|Y , is continuous in y in the sense of the topology
associated with the convergence of means of bounded, measurable functions, that

0 < EQ(X, y) < ∞ for all y(3.8)

and that

EQ(X, y) log(Q(X, y)) ≤ EQ(X, y)2 < ∞.(3.9)

Thus the set Ȳ of (2.1) can be taken to be the entire space Y in this case, and (2.7) is
satisfied for all y. Proposition 2.1 can thus be applied for each y, and H = − log(Q).

We can now split the path estimation problem as suggested by (3.5). For any
z ∈ IRn and any 0 ≤ s ≤ T , let (Xz,s

t ; s ≤ t ≤ T ) be the solution of (3.1) on the
interval s ≤ t ≤ T with ‘initial condition’ Xz,s

s = z, and let

Hp : [0, T ] × [0, T ] × IRn × X × Y → IR

be a measurable function such that

Hp(s, t, z, Xz,s, y) = −y′
tg(Xz,s

t ) + y′
sg(z) +

∫ t

s

y′
r dg(Xz,s

r )
(3.10)

+
1

2

∫ t

s

|g(Xz,s
r )|2 dr for 0 ≤ s ≤ t ≤ T.

9



The fact that such a function exists follows from the ‘strong solution’ hypothesis (H3),
as does the decomposition

H(X, y) = Hp(0, s, X0, X, y) + Hp(s, T, Xs, (Xt, s ≤ t ≤ T ), y).(3.11)

Hp(s, t, z, · , · ) is the equivalent of H for the problem of estimating the path (Xz,s
r , s ≤

r ≤ t) given the observation (Y z,s
r , s ≤ r ≤ t), where

Y z,s
t =

∫ t

s

g(Xz,s
r ) dr + Wt − Ws for s ≤ t ≤ T.

In particular, Hp(s, T, z, · , · ) is the equivalent of H for the problem of estimating Xz,s

given Y z,s. Let v(z, s, y) be the minimum apparent information for this problem; then,
according to Proposition 2.1(i),

v(z, s, y) = − log (E exp(−Hp(s, T, z, Xz,s, y))) .(3.12)

It now follows that, for any A ∈ X s
0 ,

PX|Y (A, y) =
E1A(X) exp (−Hp(0, s, X0, X, y) − v(Xs, s, y))

E exp (−Hp(0, s, X0, X, y) − v(Xs, s, y))
,(3.13)

and from Jensen’s inequality and (3.9) it follows that Hp(0, s, χ0, · , y)+ v(χs( · ), s, y)
satisfies (2.7) for all s. So, from Proposition 2.1, the path measure PX|Y restricted to
X s

0 is the unique probability measure on X s
0 that minimises the apparent information

Fs(P̃X,s, y) = h(P̃X,s |PX,s) + 〈Hp(0, s, χ0, · , y) , P̃X,s〉 + 〈v(χs, s, y) , P̃X,s〉,(3.14)

where PX,s is the restriction of PX to X s
0 . It also easily follows that the minimum

apparent information in (3.14) does not depend on s.
These arguments show that the variational form of the path estimation problem

(3.1), (3.2) can be interpreted in terms of dynamic programming, with value function
v. For each s we can split the problem into two sub-problems: the estimation of Xz,s

for each z (resulting in a minimum apparent information of v(z, s, y)), followed by the
estimation of (Xt, 0 ≤ t ≤ s), where v(Xs, s, y) plays a part in the likelihood function.
v(Xs, s, y) summarises that part of the likelihood function associated with increments
of Y after time s. The first sub-problem can be interpreted in terms of stochastic
optimal control, where the cost is the apparent information of the controlled process.
This is developed in the next section.

4. A Stochastic Control Formulation. We consider the first variational sub-
problem discussed above with s = 0. In keeping with the comments above on dynamic
programming, it turns out that we need consider only feedback controls. Also, be-
cause controls are intended to produce a change in measure of the form (3.3), it is
appropriate to let the control enter the drift through the map z �→ az, where a = σσ′.

Consider the following controlled equation

X̃t = θ +
∫ t

0

(
b(X̃s, s) + a(X̃s, s)u(X̃s, s)

)
ds +

∫ t

0

σ(X̃s, s) dṼs,(4.1)

where the initial condition, θ, is non-random. Let U be the set of measurable functions
u : IRn × [0, T ] → IRn with the following properties:

(U1) u is continuous;
10



(U2) EΓu = 1, where

Γu = exp

(∫ T

0

u′σ(Xθ,0
t , t) dVt −

1

2

∫ T

0

|σ′u(Xθ,0
t , t)|2 dt

)
,(4.2)

and (Ω,F , P ), V and Xz,s are as defined in Section 3.
Lemma 4.1. If b and σ satisfy (H3), and u ∈ U then equation (4.1) has a weak

solution and is unique in law.
Proof. From (H3) and (U1) it follows that

P

(∫ T

0

∣∣∣σ′u(Xθ,0
t , t)

∣∣∣2 dt < ∞
)

= 1.

This, together with (U2) and Girsanov’s theorem, shows that V u, defined by

V u
t = Vt −

∫ t

0

σ′u(Xθ,0
s , s) ds,(4.3)

is a standard Brownian motion under the probability measure Pu, defined by

dPu

dP
= Γu.(4.4)

This shows that (Ω,F , (Ft), Pu, Xθ,0, V u) is a weak solution of (4.1).
Next, suppose that (Ω̃, F̃ , (F̃t), P̃ , X̃, Ṽ ) is a weak solution of (4.1), and, for each

natural number N , let τN : X → [0, T ] be defined by

τN (x) = inf{t ≥ 0 : |xt| ≥ N} ∧ T.

Since X̃ is continuous P̃
(
τN (X̃) → T

)
= 1. Also, since u satisfies (U1),

Ẽ exp

(
1

2

∫ τN (X̃)

0

∣∣∣σ′u(X̃s, s)
∣∣∣2 ds

)
< ∞,

and so, from a standard variation of Novikov’s theorem (see, for example, Theorem
6.1 in [9]), it follows that (Mt, F̃t, 0 ≤ t ≤ T ), where

Mt = exp
(
−

∫ t

0

u′σ(X̃s, s) dṼs −
1

2

∫ t

0

∣∣∣σ′u(X̃s, s)
∣∣∣2 ds

)
,(4.5)

is a local martingale with respect to the sequence of stopping times (τN (X̃); N =
1, 2, . . .). Let

Ṽ N
t = Ṽt +

∫ t∧τN (X̃)

0

σ′u(X̃s, s) ds,

then, by Girsanov’s theorem, Ṽ N is a standard Brownian motion under the probability
measure P̃N , defined by dP̃N = MτN (X̃)dP̃ . Let (Xt; 0 ≤ t ≤ T ) be the filtration on
(X,X ) generated by the co-ordinate process (χt). Since

X̃t∧τN (X̃) = Φt∧τN (X̃)(θ, Ṽ
N ) for 0 ≤ t ≤ T,

11



where Φ is the strong solution to (3.1), the law of X̃ restricted to XτN
is identical to

that of Xθ,0 under Pu, restricted to the same sigma-field. Finally, for any A ∈ X ,

P̃ (X̃ ∈ A, τN (X̃) = T ) = P̃ (X̃ ∈ A) − P̃ (X̃ ∈ A, τN (X̃) < T )
→ P̃ (X̃ ∈ A),

and so, since the events on the left-hand side each belong to one of (XτN
; N = 1, 2, . . .),

the law of X̃ on X is identical to that of Xθ,0 under Pu.
Let (Ω̃, F̃ , (F̃t), P̃ , X̃, Ṽ ) be a weak solution of (4.1) for some u ∈ U. We define

the cost for controls in U as the apparent information of the resulting distribution
of X̃, P̃X . This is measured relative to the prior P θ,0

X (the distribution of Xθ,0), and
Hp(0, T, θ, · , y) (as defined in (3.10).

J(u, θ, y) = h(P̃X |P θ,0
X ) + 〈Hp(0, T, θ, · , y), P̃X〉

=
1

2
Ẽ

∫ T

0

|σ′u(X̃t, t)|2 dt − y′
T g(θ) +

1

2
Ẽ

∫ T

0

|g(X̃t)|2 dt

(4.6)

−Ẽ
∫ T

0

(yT − yt)′(Lg + Dgau)(X̃t, t) dt if the integrals exist

+∞ otherwise,

where L is the differential operator associated with X,

L =
∑

i

bi
∂

∂zi
+

1

2

∑
i,j

ai,j
∂2

∂zi∂zj
,

and D is the row-vector jacobian operator, D = [∂/∂z1 ∂/∂z2 · · · ∂/∂zn]. The cost
functional has a more appealing form in the special case that the observation path,
y, is everywhere differentiable:

J(u, θ, y) =
1

2
Ẽ

∫ T

0

(
|σ′u(X̃t, t)|2 + |ẏt − g(X̃t)|2

)
dt − 1

2

∫ T

0

|ẏt|2 dt.(4.7)

This involves an ‘energy’ term for the control and a ‘least-squares’ term for the obser-
vation path fit. These correspond to the two terms in Bayes’ formula representing the
degrees of match with the prior distribution and the observation path. The optimal
control problem (4.1), (4.7) can be thought of as a type of energy-constrained track-
ing problem. The optimal control, under which the distribution of X̃ is the regular
conditional probability distribution PX|Y ( · , y), is derived in the following theorem.

Theorem 4.2. Suppose that b, σ and g satisfy (H3) and (H4), and let the
function u∗ : IRn × [0, T ] × Y → IRn be defined by

u∗ = −(Dv)′,(4.8)

where v is as defined in (3.12). Then, for each y ∈ Y, u∗( · , · , y) belongs to U, and
for all θ ∈ IRn, y ∈ Y and P̃X ∈ P(X ) (not necessarily the distribution of a controlled
process),

J(u∗( · , · , y), θ, y) ≤ h(P̃X |P θ,0
X ) + 〈Hp(0, T, θ, · , y), P̃X〉.(4.9)

12



Proof. The proof is in three parts. The first uses the methods of stochastic flows
to establish a stochastic representation formula for u∗, (4.20). The second proves
the statement of the theorem for non-degenerate systems with bounded coefficients.
Finally, a truncation argument is used to extend this result to the general case. Only
the time-homogeneous case (b and σ not dependent on t) is treated in order to avoid
excessive notation. The arguments extend in an obvious way to the general case.

Standard moment bounding arguments (see, for example, Theorem 4.6 in [9])
show that for each natural number m there exists a Cm < ∞, not depending on z or
s, such that

sup
s≤t≤T

E|Xz,s
t |2m ≤ Cm

(
1 + |z|2m

)
(4.10)

and sup
s≤t≤T

E ‖Ψz,s
t ‖2m ≤ Cm,(4.11)

where (Ψz,s
t ∈ IRn×n; s ≤ t ≤ T ) is the solution of the equation of first-order variation

associated with Xz,s,

Ψz,s
t = I +

∫ t

s

Db(Xz,s
r )Ψz,s

r dr +
∑

i

∫ t

s

Dσi(Xz,s
r )Ψz,s

r dVi,r.(4.12)

Here, and in what follows, σi is the i’th column of σ, and Vi,t is the i’th component
of Vt. For any z, z̃ ∈ IRn and any 0 ≤ s ≤ t ≤ T

Xz,s
t − X z̃,s

t = (z − z̃) +
∫ t

s

(b(Xz,s
r ) − b(X z̃,s

r )) dr +
∫ t

s

(σ(Xz,s
r ) − σ(X z̃,s

r )) dVr,

and so for any natural number m there exists a Cm < ∞, not depending on s, t, z or
z̃, such that

E sup
s≤r≤t

∣∣Xz,s
r − X z̃,s

r

∣∣2m ≤ 32m−1

(
|z − z̃|2m + E sup

s≤r≤t

∣∣∣∣
∫ r

s

(b(Xz,s
q ) − b(X z̃,s

q )) dq

∣∣∣∣
2m

+E sup
s≤r≤t

∣∣∣∣
∫ r

s

(σ(Xz,s
q ) − σ(X z̃,s

q )) dVq

∣∣∣∣
2m )

≤ Cm

(
|z − z̃|2m +

∫ t

s

E sup
s≤q≤r

∣∣Xz,s
q − X z̃,s

q

∣∣2m
dr

)
,

where we have used Doob’s submartingale inequality, (4.10), (H3) and standard
bounds for the moments of stochastic integrals. It thus follows from the Gronwall
lemma that

E sup
s≤t≤T

|Xz,s
t − X z̃,s

t |2m ≤ Cm exp(CmT )|z − z̃|2m for all (z, z̃, s).(4.13)

Similarly,

E sup
s≤t≤T

|Xz,s
t |2m ≤ Cm(1 + |z|2m) for all (z, s),(4.14)

and so for any ε > 0 and any bounded set A ⊂ IRn there exists a C < ∞ such that

P

(
sup

s≤t≤T
|Xz,s

t | > C

)
< ε/4 for all (z, s) ∈ A × [0, T ].
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From (H3) and (H4) it follows that D(Lg) is uniformly continuous on compacts, and
so for any η > 0 there exists a δ > 0 such that if z, z̃ ∈ A and |z − z̃| < δ

P

(
sup

s≤t≤T

∥∥∥D(Lg)(Xz,s
t ) −D(Lg)(X z̃,s

t )
∥∥∥ > η, sup

s≤t≤T
(|Xz,s

t | ∨ |X z̃,s
t |) ≤ C

)
< ε/2,

so that

P

(
sup

s≤t≤T

∥∥∥D(Lg)(Xz,s
t ) −D(Lg)(X z̃,s

t )
∥∥∥ > η

)
< ε.(4.15)

The polynomial growth of D(Lg) together with (4.14) and the Vallée-Poussin theorem
shows that, for any 0 < p < ∞, the family{

sup
s≤t≤T

‖D(Lg)(Xz,s
t )‖p ; z ∈ A, 0 ≤ s ≤ T

}
,

is uniformly integrable. This and (4.15) show that for any 0 < p < ∞

E sup
s≤t≤T

∥∥∥D(Lg)(Xz,s
t ) −D(Lg)(X z̃,s

t )
∥∥∥p

= o(|z − z̃|0)(4.16)

uniformly on A× [0, T ]. Similar arguments show that Dg(Xz,s
t ), Db(Xz,s

t ), Dσi(X
z,s
t )

and D(Dgσi)(X
z,s
t ), for i = 1, 2, . . . , n, have the same property.

It follows from the mean-value theorem that

Xz,s
t − X z̃,s

t = (z − z̃) +
∫ t

s

Db
(
α0,rX

z,s
r + (1 − α0,r)X z̃,s

r

)
(Xz,s

r − X z̃,s
r ) dr

+
∑

i

∫ t

s

Dσi

(
αi,rX

z,s
r + (1 − αi,r)X z̃,s

r

)
(Xz,s

r − X z̃,s
r ) dVi,r,

where 0 < αi,r < 1 and αi,r is Fr-measurable for each i. The above continuity
properties, Hölder’s inequality and techniques similar to those used to prove (4.13)
now show that for any 0 < p < ∞

E sup
s≤t≤T

∣∣∣Xz,s
t − X z̃,s

t − Ψz,s
t (z − z̃)

∣∣∣p = o(|z − z̃|p),(4.17)

and

E |Θ(z, s, y) − Θ(z̃, s, y) − ξ(z, s, y)Θ(z, s, y)(z − z̃)|p = o(|z − z̃|p),(4.18)

both uniformly on A × [0, T ], where

Θ(z, s, y) = exp (−Hp(s, T, z, Xz,s, y))

and

ξ(z, s, y) = (yT − ys)′Dg(z) +
∑

i

∫ T

s

(yT − yt)′D(Dgσi)(X
z,s
t )Ψz,s

t dVi,t

+
∫ T

s

(yT − yt)′D(Lg)(Xz,s
t )Ψz,s

t dt −
∫ T

s

g′(Xz,s
t )Dg(Xz,s

t )Ψz,s
t dt.
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Thus Dρ = EξΘ, where ρ = EΘ. Now, Jensen’s inequality shows that

inf
z∈A,0≤s≤T

ρ(z, s, y) ≥ inf
z∈A,0≤s≤T

exp(E log(Θ(z, s, y))) > 0,(4.19)

and so

u∗(z, s, y) =
Eξ(z, s, y)Θ(z, s, y)

EΘ(z, s, y)
.(4.20)

We now consider the special case in which y is differentiable with Hölder contin-
uous derivative, b and g are bounded, and there exists an ε > 0 such that

z̃′a(z)z̃ ≥ ε|z̃|2 for all z, z̃ ∈ IRn.(4.21)

In this case ρ is continuously differentiable with respect to s, twice continuously
differentiable with respect to z, and by a standard extension of the Feynman-Kac
formula satisfies the following p.d.e. (see, for example, [7])

∂ρ

∂s
+ Lρ +

(
ẏ − 1

2
g
)′

gρ = 0 on IRn × (0, T ), ρ( · , T, y) = 1.(4.22)

Since v = − log(ρ), the value function, v, satisfies

∂v

∂s
+ Lv − 1

2
Dva(Dv)′ −

(
ẏ − 1

2
g
)′

g = 0 on IRn × (0, T ), v( · , T, y) = 0.(4.23)

Now, because of (4.10), (4.11) and the boundedness of g and Dg, u∗( · , · , y) is also
bounded and, by Novikov’s theorem, satisfies (U2). We have thus shown that in this
special case u∗( · , · , y) ∈ U. Let V ∗ and P ∗ be abbreviations for V u∗( · , · ,y) and
Pu∗( · , · ,y), respectively, where, for u ∈ U, V u and Pu are as defined by (4.3) and
(4.4). Then Itô’s rule and (4.23) show that

0 = v(Xθ,0
T , T, y) = v(θ, 0, y) +

∫ T

0

((
ẏt −

1

2
g
)′

g − 1

2
|σ′u∗|2

)
(Xθ,0

t , t, y) dt

−
∫ T

0

(u′
∗σ)(Xθ,0

t , t, y) dV ∗
t .

As was pointed out in the proof of Lemma 4.1, (Ω,F , (Ft), P ∗, Xθ,0, V ∗) is a weak
solution of (4.1) and so, since g, u∗( · , · , y) and σ are bounded,

v(θ, 0, y) = E∗
∫ T

0

(
1

2
|σ′u∗| −

(
ẏt −

1

2
g
)′

g

)
(Xθ,0

t , t, y) dt

= J(u∗( · , · , y), θ, y).

By definition, v(θ, 0, y) is the minimum apparent information, and so we have es-
tablished (4.9) in this special case. A consequence of (4.9), and the uniqueness of
the measure minimising apparent information, is that the distribution of X̃ when
u = u∗( · , · , y) is the regular conditional distribution of Xθ,0 given that Y = y. Thus,
in this special case,

Γu∗( · , · ,y) =
Θ(θ, 0, y)
ρ(θ, 0, y)

a.s.
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Next, suppose that the additional constraints placed on y, b, g and σ are removed.
For any natural number N , let

bN (z) = b(z) exp(−|z|2/N),
gN (z) = g(z) exp(−|z|2/N),
σN (z) =

[
σ N−1I

]
(an n × 2n matrix),

and let yN be a sequence of differentiable elements of Y with Hölder continuous
derivatives such that ‖y − yN‖ → 0. Then bN and gN are bounded and σN satisfies
(4.21), bN , σN and gN satisfy (H3) and (H4) uniformly in N , and bN , σN , gN ,
DbN , ∂σN/∂zi and DgN converge to b, [σ 0], g, Db, [∂σ/∂zi 0] and Dg (respectively)
uniformly on compacts. We add the subscript (or superscript) N to X, Ψ, Θ etc. to
indicate that y, b, g and σ have been replaced by yN , bN , gN and σN in the various
definitions, and that V has been replaced by the 2n-dimensional Brownian motion,
(Vt, Bt). Now

Xz,s
t − XN,z,s

t =
∫ t

s

(
bN (Xz,s

r ) − bN (XN,z,s
r )

)
dr +

∫ t

s

(
σ(Xz,s

r ) − σ(XN,z,s
r )

)
dVr

+
∫ t

s

(b(Xz,s
r ) − bN (Xz,s

r )) dr − N−1(Bt − Bs).

Arguments similar to those used to prove (4.13), (4.17) and (4.18) show that, for any
natural number m and any bounded set A ⊂ IRn,

E sup
s≤t≤T

∣∣∣Xz,s
t − XN,z,s

t

∣∣∣2m

→ 0,(4.24)

E sup
s≤t≤T

∥∥∥Ψz,s
t − ΨN,z,s

t

∥∥∥2m

→ 0,

E
∣∣Θ(z, s, y) − ΘN (z, s, yN )

∣∣2m → 0(4.25)

and E
∣∣ξ(z, s, y) − ξN (z, s, yN )

∣∣2m → 0,

all uniformly on A × [0, T ]. This, Hölder’s inequality and (4.19) show that

u∗N ( · , · , yN ) → u∗( · , · , y) uniformly on A × [0, T ].(4.26)

Thus u∗( · , · , y) satisfies (U1). It follows from (4.24) and (4.26) that

sup
0≤t≤T

∣∣∣u∗(X
θ,0
t , t, y) − u∗N (XN,θ,0

t , t, yN )
∣∣∣ → 0 in probability,

so that

Γu∗N ( · , · ,yN )
N → Γu∗( · , · ,y) in probability.(4.27)

It also follows from (4.25) and (4.19) that

Γu∗N ( · , · ,yN )
N =

ΘN (θ, 0, yN )
ρN (θ, 0, yN )

→ Θ(θ, 0, y)
ρ(θ, 0, y)

in probability,(4.28)

and so u∗( · , · , y) satisfies (U2), and the unique distribution of X̃ under this control
coincides with the regular conditional distribution of X given that Y = y. This
establishes (4.9) in the general case.
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We return now to the path estimator with initial distribution µ. The minimisation
of apparent information can be expressed in terms of the following controlled process
with random initial condition:

X̃t = X̃0 +
∫ t

0

(
b(X̃s, s) + a(X̃s, s)u(X̃s, s)

)
ds +

∫ t

0

σ(X̃s, s) dṼs,

(4.29)
X̃0 ∼ µ̃.

A simple variant of Lemma 4.1 shows that, if u is continuous and satisfies (U2) for
all θ ∈ IRn, then this equation is unique in law and has a weak solution for any initial
law, µ̃. Let P̃X be the distribution of X̃ corresponding to the pair (µ̃, u); it follows
from (3.14) and the subsequent discussion that

F (P̃X , y) = F0(µ̃, y) = h(µ̃ |µ) + 〈J(u, · , y), µ̃〉,(4.30)

and this is minimised by the choice u = u∗( · , · , y) and µ̃ = µY ( · , y), where for
B ∈ Bn

µY (B, y) = PX|Y (χ−1
0 (B), y).(4.31)

Thus, for each y, the regular conditional probability distribution PX|Y ( · , y) is Marko-
vian with ‘initial’ marginal µY ( · , y) and differential operator

Ly =
∑

i

(b + au∗( · , · , y))i
∂

∂zi
+

1

2

∑
i,j

ai,j
∂2

∂zi∂zj
.(4.32)

Of course, the nonlinear filter and interpolator for the process X can be found
from the marginals of this path space measure.

5. The Inverse Problem. The variational characterisation of the inverse prob-
lem (parts (ii) and (iv) of Proposition 2.1) can also be applied to the path estimator.
This involves choosing a likelihood function to be compatible with the (given) regular
conditional probability distribution, PX|Y ( · , y). In Section 4, we minimised appar-
ent information over probability measures corresponding to weak solutions of (4.29).
Here, we maximise compatible information over (negative) log-likelihood functions,
H̃, that give rise to posterior distributions of this type.

Let (Ω,F , P ), µ, V , and X be as defined in Section 3. For each probability
measure on IRn, µ̃, with µ̃ � µ, and each continuous u satisfying (U2) for all θ, let
H̃ be a measurable function such that

H̃(X) = − log

(
dP̃X

dPX
(X)

)
+ K

(5.1)

= − log
(

dµ̃

dµ
(X0)

)
−

∫ T

0

u′σ(Xt, t) dVt +
1

2

∫ T

0

|σ′u(Xt, t)|2 dt + K,

where K ∈ IR and P̃X is as defined following (4.29). We shall assume that µY ( · , y) �
µ̃. If this is not so, then, as shown in the proof of Proposition 2.1, we can always
choose another µ̃ resulting in more compatible information, for which it is. The term
K in (5.1) is the information in the associated (unspecified) observation.

Integral log-likelihood functions of the form (5.1) can be thought of as being
associated with observations that are ‘distributed in time’, in that information from
them gradually becomes available as t increases.
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The characterisation of PX|Y in terms if stochastic control can be used to express
the compatible information corresponding to H̃, as follows:

G(H̃, y) = K − 〈H̃ , PX|Y ( · , y)〉
= K + h(µY ( · , y) |µ) − h(µY ( · , y) | µ̃)(5.2)

+
∫ T

0

∫
IRn

(
u∗ −

1

2
u
)′

au(z, t, y)PX|Y (χ−1
t (dz), y) dt.

Log-likelihood functions of the form (5.1) could come from many different types of
observation. The only constraints placed on u here are that it be continuous and
satisfy (U2) for all θ. We could further constrain it to take the form

u(z, s) = −(Dṽ)′(z, s, ỹ),

where

ṽ(z, s, ỹ) = − log E exp

(∫ T

s

(
˙̃yt −

1

2
g̃(Xz,s

t )
)′

g̃(Xz,s
t ) dt

)
,

for appropriate g̃ and ỹ. This would correspond to observations of the ‘signal-plus-
white-noise’ variety similar to (3.2), but with ‘controlled’ observation function and
path, g̃ and ỹ. This would show the effects of errors in the observation function or
approximations of the observation path. Under appropriate regularity conditions ṽ
will satisfy the following partial differential equation:

−∂ṽ

∂t
= Lṽ − 1

2
Dṽa(Dṽ)′ −

(
˙̃yt −

1

2
g̃
)′

g̃; ṽ( · , T ) = 0.(5.3)

Thus one interpretation of the inverse problem involves the infinite-dimensional, de-
terministic optimal control in reversed time, with control (g̃, ỹ), and payoff

Π(g̃, ỹ) =
∫ T

0

∫
IRn

Dṽa
(
u∗ −

1

2
(Dṽ)′

)
(z, t, y)PX|Y (χ−1

t (dz), y) dt.(5.4)

The optimal trajectory for this dual problem, v( · , · , y) is a time-reversed likelihood fil-
ter for X given Y , and the measure, exp(−v(z, s, y))PX(χ−1

s (dz)) is an un-normalised
regular conditional probability distribution for Xs given observations (Yt−Ys, s ≤ t ≤
T ), which coincides with that provided by the Zakai equation for the time-reversed
problem. This provides an information-theoretic explanation of the connection be-
tween nonlinear filtering and stochastic optimal control used in [6], as well as widening
its scope. A detailed account of this, and the information processing aspects of non-
linear filters and interpolators can be found in [12]. For a somewhat different problem
involving optimisation over observation functions, see [16].

6. Information Flow and Localisation. The results of Section 2 concerning
the information conserving properties of Bayesian estimators can be localised in the
context of the diffusion problem (3.1), (3.2). Proposition 2.1 can be applied to provide
variational characterisations of various conditional probabilities of the path measure
PX|Y , including transition probabilities, and these can be used to characterise the
flow of information at a given time and in a given state.

For any initial law µ̃ � µ, and any control u satisfying (U1) and (U2) for all θ,
let (Ω̃, F̃ , (F̃t), P̃ , X̃, Ṽ ) be a weak solution of (4.29), let P̃X be the distribution of
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X̃, and let PX,s, P̃X,s and PX,s|Y ( · , y) be the restrictions of PX , P̃X and PX|Y ( · , y)
to X s

0 (as defined in (3.4)). It follows from the results of Section 4 that PX,s|Y ( · , y)
coincides with P̃X,s when µ̃ = µY ( · , y) and u( · , t) = u∗( · , t, y) for 0 ≤ t ≤ s. As
shown in the discussion following (3.13), this is the unique probability measure on
X s

0 minimising the apparent information (3.14). The sum of the first two terms on
the right-hand side of (3.14) is the apparent information of P̃X,s in the context of
estimators of (Xt, 0 ≤ t ≤ s) given observations (Yt, 0 ≤ t ≤ s), which we can think of
as being the apparent information up to time s. The third term on the right-hand side
of (3.14) is the information in the observations (Yt−Ys, s ≤ t ≤ T ), which we can think
of as being the information remaining in the observations Y at time s. As s increases,
the estimator corresponding to (µ̃, u) progressively converts observation information
into apparent information. If u = u∗( · , · , y) then this process is conservative, in that
Fs(P̃X,s, y) does not change with s. However, if u is not optimal then the apparent
information can increase faster than the observation information decreases.

We can refine this argument as follows. Let

Ĩs = log

(
dP̃X,s

dPX,s
(X̃)

)
+ Hp(0, s, X̃0, X̃, y) + v(X̃s, s, y) for 0 ≤ s ≤ T,(6.1)

where Hp is defined in (3.10). Then it follows from (3.11) that, for all 0 ≤ s ≤ t ≤ T ,

Ĩt = Ĩs + log

(
dP̃X,t

dPX,t
× dPX,s

dP̃X,s

(X̃)

)
+ Hp(s, t, X̃s, (X̃r, s ≤ r ≤ T ), y)

(6.2)
+v(X̃t, t, y) − v(X̃s, s, y).

Let Q̃X and QX be, respectively, the distributions of (Xz,s
r , s ≤ r ≤ t) (as defined

in Section 3) with and without the application of the control (u(Xz,s
r , r), s ≤ r ≤ t).

The apparent information of Q̃X in the context of estimators for (Xz,s
r , s ≤ r ≤ t)

given Y z,s is

Fs,t(z, Q̃X , y) = h(Q̃X |QX) + 〈Hp(s, t, z, · , y), Q̃X〉 + 〈v(χt, t, y), Q̃X〉,
(6.3)

= v(z, s, y) +
1

2

∫ t

s

∫
IRn

|σ′(u − u∗(z̃, r, y))|2 Q̃X(χ−1
r (dz̃)) dr,

where we have used (2.10). It now follows that

Ẽ(Ĩt | F̃s) = Ĩs +
1

2

∫ t

s

Ẽ
(
|σ′(u − u∗)(X̃r, r, y)|2

∣∣∣∣ F̃s

)
dr.

Thus (Ĩ , F̃t) is a sub-martingale, and a martingale if u = u∗( · , · , y). This is the
Davis-Varaiya characterisation of the optimal control for the problem of Section 4,
[4].

Setting t = s + δs in (6.3) we obtain the following local information quantities.

h(Q̃X |QX) =
1

2
|σ′u(z, s)|2δs + o(δs),(6.4)

〈Hp(s, s + δs, z, · , y), Q̃X〉 = −g(z)′δy +
1

2
|g(z)|2δs + o(δs),(6.5)

〈v(χs+δs, s + δs, y), Q̃X〉 = v(z, s, y) + g(z)′δy
(6.6)

−
((

u − 1

2
u∗

)′
au∗ +

1

2
|g|2

)
(z, s, y)δs + o(δs)
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Equation (6.4) shows the local increase in information gain of the distribution of
the process (4.29) over PX , equation (6.5) shows the local increase in the residual
information of the estimator P̃X , and equation (6.6) shows the local decrease in the
average information remaining in the observation after time s. If y is differentiable
at s, then there is a local rate of increase of apparent information of |σ′u(z, s)|2/2 −
(ẏs − g/2)′g(z), and a local rate of decrease of remaining observation information of
(u − u∗/2)′au∗(z, s, y) − (ẏs − g/2)′g(z). The former exceeds the latter unless the
control is optimal.

The dual problem can also be localised in this way. For u as above, let H̃p be a
measurable function such that

H̃p(s, t, z, Xz,s) = −
∫ t

s

u′σ(Xz,s
r , r) dVr +

1

2

∫ t

s

|σ′u(Xz,s
r , r)|2 dr

(6.7)
+(Ks − Kt).

where K is differentiable and KT = 0. This can be thought of as being the equivalent
of Hp(s, t, z, Xz,s, y) for an unspecified time-distributed observation such that at time
s the remaining information in the observation is Ks. (This corresponds to H̃(X)
of (5.1) with K = K0.) Let Q∗

X be the distribution of (Xz,s
r , s ≤ r ≤ t) when it is

controlled by the optimal control. Taking expectation with respect to Q∗
X in (6.7), and

taking the limit as t ↓ s, we obtain a local rate of decrease of compatible information of
(u∗−u/2)′au(z, s, y). The local rate of increase of the information gain of PX|Y ( · , y)
is, of course, |σ′u∗(z, s, y)|2/2. The latter exceeds the former unless u is optimal.

In the global dual problem (5.1), the regular conditional probability PX|Y ( · , y)
is the source of information. At time s the information in this source is

Ss = h(µ̃|µ) +
1

2

∫ s

0

∫
IRn

|σ′u∗(z, t, y)|2PX|Y (χ−1
t (dz), y) dt.

At time T there is no information in the observation and no residual information—
all the information is still in the source. As s decreases, information flows out of
the source at a rate Ṡs; it is merged with residual information and flows into the
observation at a rate K̇s. If u is optimal, then the flow is conservative, whereas more
generally information is lost.

Let Hz,s be the Hilbert space of n-vectors of reals with inner product

〈α, β〉z,s = α′a(z, s)β.

The developments above show that the regular conditional probability PX|Y ( · , y)
is locally characterised at the point (z, s) by the diffusion coefficients a(z, s) and
(b(z, s) + a(z, s)α∗), where α∗ minimises

1

2
‖α‖2

z,s − 〈α, u∗(z, s, y)〉z,s;(6.8)

whereas the optimal trajectory in the dual problem (5.3) is locally characterised in
that its negative gradient at the point (z, s), β∗, maximises

〈β, u∗(z, s, y)〉z,s −
1

2
‖β‖2

z,s.(6.9)

The local balance of the Bayesian path estimator is thus characterised by the
Legendre transform pair (6.8), (6.9). Of course, this is the characterisation of the
optimal control problem of Section 4 provided by the stochastic maximum principle,
the adjoint process being the gradient of the optimal dual state, v( · , · , y), evaluated
at (X̃t, t).
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7. Conclusions. This article has developed dual variational characterisations
of Bayesian estimation, in which the ‘cost’ functionals have particular information
theoretic meaning. These characterisations provide a natural framework for the study
of modelling and approximation errors in estimators such as nonlinear filters. They
also link such issues with a broader theory of ‘stochastic dissipativeness’ (see [1]),
on which the ideas and techniques of statistical physics can be brought to bear. We
believe that this will have a number of advantages, for example in the study of the long-
term behaviour of stochastic systems. The characterisations also provide a framework
for the representation of estimators, in a broader context, as apparent information
minimisers and compatible information maximisers. These issues will be explored
elsewhere.
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