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Abstract

We investigate the information theoretic properties of Kalman-
Bucy filters in continuous time, developing notions of information
supply, storage and dissipation. Introducing a concept of energy, we
develop a physical analogy in which the unobserved signal describes
a statistical mechanical system interacting with a heat bath. The
abstract ‘universe’ comprising the signal and the heat bath obeys
a non-increase law of entropy; however, with the introduction of
partial observations, this law can be violated. The Kalman-Bucy
filter behaves like a Maxwellian demon in this analogy, returning
signal energy to the heat bath without causing entropy increase.
This is made possible by the steady supply of new information.

In a second analogy the signal and filter interact, setting up a
stationary non-equilibrium state, in which energy flows between the
heat bath, the signal and the filter without causing any overall en-
tropy increase. We introduce a rate of interactive entropy flow that
isolates the statistical mechanics of this flow from marginal effects.
Both analogies provide quantitative examples of Landauer’s Princi-
ple.

KEYWORDS: Information Theory, Landauer’s Principle, Non-Equilibrium
Statistical Mechanics, Statistical Filtering.

1 Introduction

In this article we study continuous-time Kalman-Bucy filters from infor-
mation theoretic and statistical mechanical viewpoints. The information
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flows for such filters are identified and these strongly resemble the entropy
flows of non-equilibrium statistical mechanics, which occur when a system
is held away from its equilibrium state by an interaction with an exogenous
system. (See, for example, [9].)

By introducing a concept of energy, we construct a physical analogy
for the Kalman-Bucy filter, in which the partially observed signal interacts
with a heat bath. The interaction forces the signal towards a stationary
state, which maximises the entropy of the ‘universe’ comprising the signal
and the heat bath. Whatever the initial state might be it is impossible
for this entropy to decrease at any stage during convergence, and so our
abstract universe obeys a law akin to the Second Law of Thermodynamics.
However, this law can be broken in the presence of partial observations:
the entropy of the abstract universe can be reduced (at least temporarily)
at a rate bounded above by that of the information supply from the obser-
vations. We show, in the analogy, that the filter behaves like a Maxwellian
demon [20], extracting energy from the signal and returning it to the heat
bath, thus ‘cooling’ the signal. The filter acts as a heat pump in this anal-
ogy but, unlike those of real physical heat pumps, its operations cause no
overall increase in entropy. This is made possible by the steady supply of
new observations.

In a second physical analogy, the joint system, comprising the signal
and filter, interacts with a heat bath. We identify ‘conditional signal’ and
filter subsystems, and show that energy flows around a loop comprising
these subsystems and a heat bath. In the stationary state of this system,
energy flows with no attendant change in the overall entropy. Thus the
system in the second analogy is a type of perpetual motion machine, at the
limits of a dynamic theory of non-equilibrium statistical mechanics. We
use recent techniques in this theory (see [2], [10] and [17]), which are based
on dynamic Markov models, to quantify the entropy flows in this system,
and introduce a concept of interactive entropy flow to isolate the interac-
tion of the components from their internal, autonomous non-equilibrium
mechanics.

Information theoretic aspects of filters have received much attention in
the literature. For example, a variety of information theoretic measures
of optimality such as the mutual information between the observation and
the estimation error are considered in [30], [14] and [8]. In particular, these
articles show that many of these measures are optimised by the Kalman fil-
ter in the linear Gaussian filtering problem of this article. More interesting
is the fact that they provide a framework for deriving sub-optimal filters
in the nonlinear case. The measure of interest in this article is the mutual
information between the observation path and the signal value. Our re-
sults can be extended to nonlinear systems (see [24]), but then involve the
infinite-dimensional nonlinear filter. Except in special cases, the entropic
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efficiency of the optimal filter in the statistical mechanical analogies is not
shared by finite-dimensional approximations.

The results most closely connected with our work are to be found in [7]
and [29]. The first of these develops an expression for the mutual informa-
tion between the signal and observation paths in a fairly general context.
This result is the basis of our definition of information supply in Section 3.
In [29], a comparison is made between Duncan’s path information quan-
tity and the mutual information between the observations and signal value.
This is intimately connected with our information dissipation process. We
do not develop any new theorems of filtering, (although we do not think
that our dynamical view of information theory, namely the way in which in-
formation flows from the observations into the conditional distribution, has
appeared before). The aim of this paper is, rather, to make connections be-
tween two disparate fields (filtering theory and statistical mechanics) and
to show that the martingale theoretic techniques of optimal filtering are
ideally suited to the study of the interactions between subsystems of a sta-
tistical mechanical system, and more widely to the study of non-equilibrium
systems. We believe that our definition and study of interactive entropy
flow is novel.

Our research is partly inspired by the doctoral thesis of Michael Propp
[27], written under the direction of the first author. In this, an input-output
view of a thermodynamic system is constructed by associating a Markov
process with the system and then defining forces and fluxes for this process.
A dissipation inequality, analogous to that of Willems [31] is then derived
for this process. There, as in recent developments in non-equilibrium sta-
tistical mechanics and the results presented here, time reversibility plays
an essential role. These ideas were also applied in [27] to the study of elec-
trical networks involving Nyquist-Johnson resistors. (See, also, the related
work in [5].)

Our work is also connected with ideas on the thermodynamics of com-
putation, which have received much attention in recent decades. (See [1]
for a review article.) Because they can be investigated in the context of
simple abstract universes comprising a few components, our physical analo-
gies for the Kalman-Bucy filter provide precise, quantitative examples of
Landauer’s Principle, [16]. This states that, under certain circumstances,
entropy can be increased by the erasure of information. Of course it is not
our aim here to investigate the feasibilty (or otherwise) of thermodynami-
cally efficient computing machines.

The analogies in this article concern stable, time-homogeneous systems.
A further interactive analogy, which applies to a much wider class of linear
systems, is developed in [23]. The analogies of both articles are extended
to certain types of nonlinear system in [24].

The specific problem addressed here is that of the evolution of a linear,
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partially-observed, Gaussian system over the time interval, [0,∞). The
use of a specific start time admits the study of transient effects. The
‘steady state’ of the system can be investigated by means of appropriate
initialisation. (Our model includes an initial observation, which allows the
signal and filter to be initialised in any consistent state.)

All random variables and processes will be defined on the probability
space (Ω,F , P). (In the measure-theoretic tradition of probability, this is a
space of outcomes, Ω, a σ-field of events (measurable subsets of Ω), F , and a
probability measure P : F → [0, 1]. For example, the event that a particular
scalar random variable takes a value exceeding (say) unity is a member of
F and is assigned a probability of occurence by the map P.) The primary
stochastic processes (those appearing in equations (1) and (2) below) will
be adapted to a filtration (Ft, t ∈ [0,∞)). This is a non-decreasing (in the
sense of inclusion) family of sub-σ-fields of F , and represents the ‘growth
of randomness’ with t. Thus an event may belong to Ft but not to Fs for
some s < t, meaning that whether or not it occurs is determined at least
in part by randomness that first manifests itself in the system between
times s and t. (An example being the event that the components of Xr

are all negative at time r for some s < r < t.) The term filtration should
not be confused with the filtering performed by the Kalman-Bucy filter,
although there is certainly a connection when the latter is considered in an
information-theoretic context. In the dynamic theory of information used
in this article (as opposed to that based on ergodic assumptions), measure-
theoretic filtrations are the elementary repositories of information.

In our partially observed system, the unobservable component (which
we shall call the signal), X, is an IRn-valued process defined by the following
integral equation:

Xt = ξ +
∫ t

0

AXs ds + BVt for t ∈ [0,∞). (1)

Here A and B are n×n matrices of reals, ξ is an F0-measurable IRn-valued
Gaussian random variable with mean zero and positive-definite covariance
matrix Pi, and (Vt,Ft, t ∈ [0,∞)) is an n-vector Brownian motion. V can
be thought of as being the vector process of time integrals of independent
scalar white noises, and so Xt is the state at time t of a finite-dimensional
linear system driven by vector white noise. (See the comments in Sec-
tion 5 regarding infinite-dimensional systems.) The reason (1) is written
in integral (rather than differential) form is because of the impossibility
of constructing processes with the distributions of white noise that have
sample paths with reasonable analytic properties. (Some concepts from
measure-theoretic probability and Itô calculus will occasionally be used in
some of the more technical parts of this article, but a full familiarity with
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them is not essential to an understanding of its primary message. The
interested reader is referred to [15] for further information.)

We shall assume that:

(H1) all eigenvalues of A have negative real parts;

(H2) B has full rank.

Of course X, thus defined, is a zero-mean vector Gaussian process with
covariance matrix, P (t) = EXtX

′
t, satisfying

P (t) = Pi +
∫ t

0

(AP (s) + P (s)A′ + ΣV ) ds,

where ΣV is the positive-definite n× n matrix BB′.
The observable component of our partially observed system (which we

shall call simply the observation), Y , is an IRd-valued process (for some
d ≤ n) defined by the integral equation

Yt = CX0 + ζ +
∫ t

0

ΓXs ds + Wt for t ∈ [0,∞), (2)

where C and Γ are d × n matrices of rank d, ζ is an F0-measurable IRd-
valued Gaussian random variable, independent of ξ, with mean zero and
positive-definite covariance matrix M , and (Wt,Ft, t ∈ [0,∞)) is a d-vector
Brownian motion, independent of V . The observation has an initial value
that depends linearly on the initial value of X and the ‘noise’ term ζ, and a
running term (Yt−Y0; t ∈ [0,∞)). For an appropriately chosen C, Y could
be thought of as being part of an observation process consisting of the last
two terms in (2) only, but extending over negative as well as positive times.
In this interpretation Y0 would summarise the partial observations of the
process X over negative times.

The aim of ‘filtering’ is to estimate the signal at each time t, making
full use of the information furnished by the observations up to that time,
(Ys, s ∈ [0, t]). The Kalman-Bucy filter is a formula (recursive in t) for
calculating the conditional distribution of Xt given (Ys, s ∈ [0, t]), which
is Gaussian. The covariance form of the filter propagates the mean vector,
X̂, and covariance matrix, Q, of this conditional distribution. These evolve
as follows:

X̂0 =
(
P−1

i + C ′M−1C
)−1

C ′M−1Y0,

X̂t = X̂0 +
∫ t

0

(A−Q(s)ΣW ) X̂s ds +
∫ t

0

Q(s)Γ′ dYs,

(3)
Q(0) =

(
P−1

i + C ′M−1C
)−1

,

Q̇(t) = AQ(t) + Q(t)A′ + ΣV −Q(t)ΣW Q(t),
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where ΣW is the positive-semi-definite n×n matrix Γ′Γ. (See, for example,
[6] or [11].) Since Pi and M are positive definite the inverse matrices here
are well defined, and P (t) and Q(t) are positive definite for all t. Note that
the covariance matrix Q is not dependent on the observation, Y , and so
all the information in the conditional distribution that is derived from the
observation is held in the mean vector, X̂.

We denote by (FY
t , t ∈ [0,∞)) the filtration generated by Y , and by ν

the associated innovations process: for t ∈ [0,∞),

FY
t = σ(Ys, s ∈ [0, t])

(4)
νt = Yt − CX̂0 −

∫ t

0

ΓX̂s ds.

For each t, FY
t is the σ-field of events whose occurence or non-occurence

is completely determined by the observation path up to time t, (Ys, s ∈
[0, t]). It is a standard result of filtering theory that (νt,FY

t ) is a d-vector
Brownian motion with non-zero initial value having the d-variate Gaussian
distribution N(0, (In − CQ(0)C ′M−1)(CPiC

′ + M)(In −M−1CQ(0)C ′)).
(See, for example, [6].) It is also known that the filtration generated by ν
coincides with that generated by Y . (Here, and in what follows, we denote
the identity matrix of order n by In, the multi-variate Gaussian distribution
with mean vector µ and covariance matrix Σ by N(µ,Σ), and its density
by n(µ,Σ).) The increments of ν convey that part of the information in the
corresponding increments of Y that is ‘novel’ or ‘innovative’ in the filtering
context. The conditional mean vector X̂ can be expressed entirely in terms
of ν, as follows:

X̂t = PiC
′M−1ν0 +

∫ t

0

AX̂s ds +
∫ t

0

Q(s)Γ′ dνs. (5)

This representation is crucial to the developments in Section 4 since it
shows that X̂ is Markov in its own right.

2 A Physical Analogy for the Signal.

In this section we explore the notion that the signal, X, of (1) can be
thought of as a mesoscopic description of an abstract statistical mechani-
cal system. Its evolution is not determined solely by its current value (as
would be the case if X were a microscopic description (of, say, a Hamilto-
nian system), nor is it purely deterministic (as would be the case if X were
a macroscopic (or thermodynamic) quantity). The fact that X is Markov
is consistent with it corresponding to a ‘vanishingly small’ component of
the phase space variable of a large Hamiltonian system with random initial
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condition. (See [27].) We follow recent developments in non-equilibrium
statistical mechanics (see [28], [2], [10] and [17]) in which stationary equi-
librium and non-equilibrium states correspond to invariant distributions
of Markov processes. Under conditions (H1) and (H2), X has the unique
invariant distribution, N(0, PSS), with positive-definite covariance matrix
satisfying the following algebraic equation

APSS + PSSA′ + ΣV = 0. (6)

(See, for example, Section 5.6 in [15].)
We consider our statistical mechanical system to be an abstract ‘uni-

verse’, isolated from other systems and energy conserving, and identify two
separate energy components: one associated with the degrees of freedom
revealed by X, which we shall call the energy of the signal, and the other
associated with the invisible degrees of freedom. The first of these is de-
termined by the Hamiltonian:

HX(x) =
1
2
x′P−1

SS x. (7)

It turns out that the second component can be thought of as the energy of
a unit-temperature heat bath with which the signal interacts.

For a probability measure µ on (IRn,Bn), the average energy, E(µ),
entropy, S(µ), and free energy, F(µ), of the signal are defined as follows:

E(µ) =
∫

HX(x)µ(dx)

S(µ) = −
∫

log
(

dµ

dλ
(x)
)

µ(dx) if the integral exists
(8)

−∞ otherwise,
F(µ) = E(µ)− S(µ),

where λ is Lebesgue (volume) measure. (The entropy of the signal is, thus,
defined in terms of the standard volume element in IRn.) It can easily be
shown by a variational argument that the free energy of the signal, F , is
minimised by the invariant distribution N(0, PSS).

At time t, the average energy EX(t), entropy SX(t) and free energy
FX(t) of the signal are as follows:

EX(t) = E(N(0, P (t))) =
1
2
tr
(
P (t)P−1

SS

)
,

SX(t) = S(N(0, P (t))) =
n

2
(1 + log(2π)) +

1
2

log |P (t)|, (9)

FX(t) =
1
2
tr
(
P (t)P−1

SS

)
− n

2
(1 + log(2π))− 1

2
log |P (t)|.
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As t increases, energy flows into the signal at an average rate

ĖX(t) = tr
(
A(P (t)− PSS)P−1

SS

)
, (10)

which causes its entropy to increase at rate

ṠX(t) = tr
(
A(P (t)− PSS)P (t)−1

)
. (11)

(Of course, both of these rates could be negative, corresponding to an
average outflow of energy.) It then easily follows that

ḞX(t) = −1
2
tr
((

P−1
SS − P (t)−1

)
ΣV

(
P−1

SS − P (t)−1
)
P (t)

)
≤ 0.

In fact this ‘non-increase’ property of the free energy is true whatever the
distribution of X0; the positive definiteness of ΣV ensures that, for every
t > 0, Xt has a smooth density p( · , t) satisfying the Fokker-Planck equation

∂p

∂t
= −

∑
i

∂

∂xi
((Ax)ip) +

1
2

∑
i,j

∂2

∂xi∂xj
((ΣV )ijp) ,

from which it follows that

d

dt
F(p( · , t)) = −1

2

∫ (
P−1

SS x +∇ log p
)′

ΣV

(
P−1

SS x +∇ log p
)
p(x, t) dx

≤ 0.

The process X can be thought of as describing the evolution of an abstract
statistical mechanical system subject to random exogenous forces, which
add or remove energy in order to drive the system towards its invariant
distribution, and so minimise its free energy.

In a more general context, stationary states of statistical mechanical
systems are minimisers of free energies of the form

F(µ) = E(µ)− TS(µ),

where T is the temperature of the stationary state. (See, for example, [9].)
Thus, we can consider the part of the energy of our abstract universe not
associated with the signal as being in a heat bath at unit temperature that
supplies or absorbs heat in order to drive the system towards the stationary
state N(0, PSS). During this convergence, the entropy of X may increase
or decrease according to the value of the covariance, P (t). Of course, the
entropy of the heat bath, SH(t), is also changed by this interaction. (Our
heat bath is idealised in the sense that it can supply or absorb any finite
amount of energy without suffering a temperature change.)
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It follows from the energy conserving property of our abstract universe
and the fact that the heat bath has unit temperature that

SH(t) = K − EX(t)

for some constant K, and it easily follows that

d

dt
(SX(t) + SH(t)) = −ḞX(t) ≥ 0.

Thus, the overall rate of increase of entropy of our universe is non-negative,
which shows that it obeys a law of non-decrease of entropy similar to the
Second Law of Thermodynamics. The fact that the temperature of the
equilibrium state is unity is a consequence of the way in which HX was
defined in (7).

We summarise the foregoing discussion in the following proposition.

Proposition 2.1 Let U be a closed (energy conserving) system, whose
energy and entropy are the sums of those of two sub-systems, X and H.
Let µ (a probability measure on (IRn,Bn)) be a ‘mesoscopic state’ of U ,
for which the average energy and entropy of X , E(µ) and S(µ), are as
defined in (8), and for which the average energy and entropy of H are both
K − E(µ), for some constant K.

(i) The entropy of U is maximised by the mesoscopic state N(0, PSS).

(ii) If µ evolves in time according to the Fokker-Planck equation associ-
ated with (1), and if (H1) and (H2) are satisfied, then the entropy of
U is non-decreasing.

When X is in its stationary state there is on average no flow of energy
between the heat bath and the signal. However, for individual outcomes of
X there is a continuous exchange of energy back and forth between these
components. In fact an application of Itô’s formula shows that the energy
of the signal evolves according to the following equation:

HX(Xt) = HX(X0) +
∫ t

0

tr
(
A(XsX

′
s − PSS)P−1

SS

)
ds

(12)

+
∫ t

0

X ′
sP

−1
SS B dVs

It is these fluctuations that cause some energy to loop in the presence of
observations. (See Section 3, below.) The invariant distribution represents
a type of dynamic equilibrium.
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We follow the nomenclature of [17] by referring to invariant distributions
of Markov processes as stationary equilibrium states or stationary non-
equilibrium states according to the net flow of entropy at the invariant
distribution, an equilibrium state being one for which this flow is zero. In
order to quantify entropy flow for the process X we first define its entropy
production. This involves the time-reversed dynamics of X. For some
(large) T < ∞ and each t ∈ [0, T ], let

X̄t = XT−t,

F̄X
t = σ(X̄s, s ∈ [0, t]),

(13)
Ā(t) = −A− ΣV P (T − t)−1,

V̄t = B−1

(
X̄t − X̄0 −

∫ t

0

Ā(s)X̄s ds

)
.

Lemma 2.1 (i) The process (V̄t, F̄X
t , t ∈ [0, T ]) is an n-dimensional

Brownian motion.

(ii) For each t ∈ [0, T ],

F̄X
t = σ(X̄0, (V̄s, s ∈ [0, t])). (14)

Proof. It follows from (1) and the definition of X̄ that for 0 ≤ s ≤ t ≤ T

EX̄sX̄
′
t = exp(−A(t− s))P (T − t).

Straightforward calculations now show that, for any 0 ≤ r ≤ s ≤ t ≤ T ,

EX̄r(V̄t − V̄s)′ = 0,

and that V̄ has the following quadratic covariation:

[V̄ , V̄ ′]t := lim
N↑∞

N∑
n=1

(
V̄nt/N − V̄(n−1)t/N

) (
V̄nt/N − V̄(n−1)t/N

)′
= Int for all t ∈ [0, T ],

and so V̄ is an independent-increments Gaussian process, independent of
X̄0, and with this quadratic covariation. It is thus a standard n-vector
Brownian motion with respect to the filtration it generates. It now follows
from the definition of V̄ that

X̄ = Φ̄
(
X̄0, V̄

)
,

where Φ̄ is the strong solution of the following Itô equation:

dX̄t = Ā(t)X̄t dt + BdV̄t, for t ∈ [0, T ] (15)
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and this establishes part (ii). This, and the independence of X̄0 and V̄
establish part (i). •

For each 0 ≤ t − ε < t + ε ≤ T , let ΠX
t+ε|t and ΠX

t−ε|t be the Xt-
conditional distributions of the processes (Xu, u ∈ [t, t + ε]) and (X̄u, u ∈
[T − t, T − t + ε]), respectively. Since the diffusion matrix ΣV is positive
definite it follows from the Cameron-Martin-Girsanov theorem (see, for
example, Chapter 6 in [18]) that ΠX

t+ε|t and ΠX
t−ε|t are mutually absolutely

continuous probability measures with Radon Nikodym derivative (relative
density)

dΠX
t+ε|t

dΠX
t−ε|t

(X) = exp
(∫ t+ε

t

X ′
s(A− Ā(s̄(s)))′(B′)−1 dVs

+
1
2

∫ t+ε

t

X ′
s(A− Ā(s̄(s)))′Σ−1

V (A− Ā(s̄(s)))Xs ds

)
,

where s̄(s) = T +s−2t. Thus we may define the rate of entropy production
of X at time t ∈ (0, T ) as

RX(t) := lim
ε↓0

1
ε
E log

(
dΠX

t+ε|t

dΠX
t−ε|t

(X)

)
(16)

=
1
2
tr
(
(A− Ā(T − t))′Σ−1

V (A− Ā(T − t))P (t)
)
.

Remark 2.1 RX(t) measures the degree of time-asymmetry of the process
X at time t. Imagine a game in which one player secretly ‘cuts out’ the
small segment of a sample path of X in the interval (t − ε, t + ε), tosses
a coin, reversing the time direction of the segment if ‘heads’ occurs, and
then shows the other player the segment, asking whether or not it has been
reversed. RX(t) is a measure of the average degree of ease with which the
second player could answer correctly.
Remark 2.2 RX(t) would be infinite if ΣV were singular, since it would
then be possible, with probability one, for the second player in the game
described above to distinguish time directions. For example, consider the
case in which

A =
[
−1 0
1 −1

]
and ΣV =

[
1 0
0 0

]
.

The direction of time could be distinguished with probability one, here,
from a comparison of the signs of Xt,2 − Xt,1 and of the slope of Xt,2 at
time t.
Remark 2.3 The rate of entropy production of the time-reversed process
X̄ at time t is the same as that of the forward process X at time T − t.
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Remark 2.4 RX(t) is non-negative. It is zero if and only if X is in its
invariant distribution at time t (P (t) = PSS) and X is self-adjoint in the
sense that

PSSA′ = APSS , (17)

in which case Ā(t) = A for all t, and the dynamics of X are identical in
both time directions.
Remark 2.5 RX is homeomorphism invariant. If f is a continuous, one-
to-one mapping from IRn to IRn, then it induces new probability measures
on the space of continuous functions from [t, t + ε] to IRn corresponding
to ΠX

t+ε|t and ΠX
t−ε|t. These can be used to define the rate of entropy

production of the process f(Xt). This is, of course, equal to RX(t).
We can now define the entropy flow of X (possibly away from its invari-

ant distribution) as the difference between its rate of entropy production
and its rate of change of entropy:

ΦX(t) := RX(t)− ṠX(t). (18)

Thus the entropy production comprises two parts: one that drives the
process towards its stationary (minimum free energy) state, and another
that represents net entropy flow. If X is self-adjoint in the sense of (17),
then this flow is zero in the stationary state, and the latter is called an
equilibrium state; otherwise it is called a non-equilibrium state.

The following electrical example, involving Nyquist-Johnson resistors,
illustrates the foregoing analogy. A Nyquist-Johnson resistor of value R
Ohms produces a Gaussian white noise voltage of mean-square value 2TR,
where T is the absolute temperature of the resistor in units for which the
Boltzmann constant is unity. (See [12] and [25].) Consider the circuit of
Figure 1, which comprises a linear inductor, a linear capacitor and two
Nyquist-Johnson resistors. The latter are supposed to be held at unit
temperature by immersion in a (physical) heat bath.

The electrical energy stored in the circuit is determined by the current
in the inductor and the voltage between the plates of the capacitor. Taking
these to be the two components of an IR2-valued process X, it follows that
X satisfies (1) with

A =
[
−R1/L −1/L

1/C −1/(CR2)

]
B =

√
2
[ √

R1/L 0
0 1/(C

√
R2)

]
.

The invariant distribution of X is N(0, PSS), where

PSS =
[

1/L 0
0 1/C

]
,
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and so
HX(x) =

1
2
Lx2

1 +
1
2
Cx2

2.

The energy of the signal here corresponds to the electrical energy stored in
the circuit. This energy fluctuates as heat passes to and from the physical
heat bath through the resistors. The whole ‘universe’ here has many more
degrees of freedom than X1(t) and X2(t). However, these are hidden in the
inner workings of the heat bath.

This system is not self-adjoint, and has a rate of entropy flow in the
stationary state of

RX,SS = 1/(R1C) + R2/L.

This means that, in the spirit of Remark 2.1, it is possible to make informed
judgements about the direction of time from observation of small segments
of the path of X in steady-state.

In a well known paradox of statistical mechanics due to Maxwell, [20],
a demon is able to make heat flow from a box containing a low tempera-
ture gas into an adjacent box containing a gas at higher temperature, thus
(apparently) reducing the entropy of the system and violating the Second
Law of Thermodynamics. It does this by observing the molecules of both
gases in the vicinity of a (closable) hole connecting the two boxes. When
a molecule of the cool gas with unusually high kinetic energy approaches
the hole, the demon opens it allowing the molecule through. It does like-
wise when a molecule of the hot gas with unusually low kinetic energy
approaches the hole from the other side. In fact it is generally accepted
that this does not violate the Second Law since, in carrying out its role,
the demon is not only reducing the entropy of the system of gases but also
erasing the information held in the system’s observational state. According
to Landauer’s Principle this erasure, in so much as it causes irreversibility,
involves entropy increase in other components of the Universe. (See, for ex-
ample, [16] or [1].) The demon can avoid irreversibility by retaining copies
of all the observational state measurements it has used in performing its
role. We show in the following section that the existence of the observation
process Y of (2) allows an entropy reduction of the demonic type in the
‘universe’ comprising the signal and the heat bath.

3 The Role of Observations.

We begin this section by evaluating the information flows that occur in the
Kalman-Bucy filter. Let C(t) be the mutual information between Xt and
(Ys, s ∈ [0, t]):

C(t) := I(Xt ; (Ys, s ∈ [0, t])),
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where, for random variables Θ and Φ taking values in Borel spaces and
having joint and marginal distributions PΘΦ, PΘ and PΦ:

I(Θ ; Φ) =
∫

log
(

dPΘΦ

d(PΘ ⊗ PΦ)

)
d PΘΦ . (19)

C(t) can be thought of as being the observation-derived information on
Xt stored by the filter at time t. Since it is a mutual information, it is not
dependent on any underlying reference measure (such as Lebesgue (volume)
measure). It is invariant with respect to measurable one-to-one mappings
on the underlying Borel spaces, and so has an absolute meaning, unlike
quantities such as the signal entropy, SX(t) of (9). (For example, C(t) = 0
would imply that the observations up to time t were completely useless for
estimating Xt.) Also, since X̂t is a sufficient statistic for the conditional
distribution of Xt (i.e. the randomness in the conditional distribution of Xt

given (Ys, s ∈ [0, t]) is completely contained in X̂t), C(t) is also the mutual
information between Xt and X̂t. According to the invariance property, it is
also the mutual information between f1(Xt) and f2(X̂t) for any measurable
one-to-one maps, f1 and f2, from IRn to IRn. It now easily follows that

C(0) =
1
2

log |Pi + M | − 1
2

log |M |,
(20)

Ċ(t) =
1
2
tr (ΣW Q(t))− 1

2
tr
(
ΣV (Q(t)−1 − P (t)−1)

)
,

from which it is tempting to think of the information supply to the store
up to time t as being

S(t) =
1
2

log |Pi + M | − 1
2

log |M |+ 1
2

∫ t

0

tr(ΣW Q(s)) ds, (21)

and the information dissipated from the store up to time t as being

D(t) =
1
2

∫ t

0

tr
(
ΣV (Q(s)−1 − P (s)−1)

)
ds. (22)

The following lemma justifies this interpretation. The novelty here is one
of interpretation; the result concerning the mutual information Cp(0, t) was
first proved in [7], and that concerning the mutual information Cp(t, t) is
proved in [29]. (See also Lemma 16.9 in [19]). A sketch proof is included
here for the sake of completeness.

Lemma 3.1 Let S and D be as defined in (21) and (22), and, for any s ≤ t
let Cp(s, t) be the mutual information between the paths (Xr, r ∈ [s, t]) and
(Yr, r ∈ [0, t]); then

Cp(s, t) = S(t)−D(s). (23)
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Proof. Let PR
t and PM

t be the probability measures on F , defined by the
following Girsanov transformations. (See, for example, Chapter 6 in [18])

dPR
t

dP
=

n(0, Id)(Y (0))
n(Cξ,M)(Y (0))

exp
(
−
∫ t

0

X ′
rΓ

′ dYr +
1
2

∫ t

0

X ′
rΣW Xr dr

)
dPM

t

dPR
t

=
n(0, CPiC

′ + M)(Y (0))
n(0, Id)(Y (0))

exp
(∫ t

0

X̂ ′
rΓ

′ dYr (24)

−1
2

∫ t

0

X̂ ′
rΣW X̂r dr

)
.

It easily follows from elementary manipulations of d-variate Gaussian dis-
tributions and the Cameron-Martin-Girsanov theorem that neither trans-
formation in (24) alters the distribution of X. However, the first transfor-
mation renders (Yr, r ∈ [0, t]) a Brownian motion, idependent of X, having
non-zero initial value with distribution N(0, Id). (PR

t is the reference prob-
ability of filtering theory.) The second transformation restores the original
marginal distribution to (Yr, r ∈ [0, t]), while retaining its independence
from X. (This follows from the innovations representation of Y in (4).)
Thus, under PM

t , X and (Yr, r ∈ [0, t]) are independent but have the same
marginal distributions as they have under P.

It now follows that

Cp(s, t) = C(s) + E log

(
dP

dPM
t

(
dP

dPM
s

)−1
)

= C(s) +
1
2

∫ t

s

tr(ΣW Q(r)) dr

= S(t)−D(s),

as claimed. •
Like C, the information quantities S, D and Cp are mutual informations,

and thus invariant with respect to measurable one-to-one transformations.
S(0) is the information gain on the whole process X arising from the initial
observation Y (0), and S(t)− S(0) is the information gain arising from the
increments of the observation Y between times 0 and t. We can think of
Cp(s, t) as being the information stored by a path estimator that has access
to (Yr, r ∈ [0, t]) but has no interest in the values of X prior to time s. If s
increases but t remains constant, the path estimator dissipates this stored
information at rate Ḋ(s); the dissipation process represents observation-
derived information that was useful for estimating the past of X, but is of
no use in estimating its present or future. It also has the representation

D(t) =
1
2

∫ t

0

E tr (ΣV IF (Xs, s)) ds, (25)
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where IF (x, t) is the Fisher information matrix associated with the likeli-
hood function for Xt given (Ys, s ∈ [0, t]):

IF (x, t) = E∇x log(Λ)∇x log(Λ)′(x, t, Y ), (26)

where

Λ(x, t, Y ) =
n(X̂t, Q(t))(x)
n(0, P (t))(x)

.

We now take the view that entropy is simply unobservable information.
Thus, if the signal process X of (1) were completely unobservable, its en-
tropy at time t would be SX(t), as defined in (9). However, this is reduced
in the presence of the partial observations (Ys, s ∈ [0, t]) to

SX|Y (t) = ES(N(X̂t, Q(t)))
(27)

= SX(t)− C(t).

We cannot allow perfect observations of Xt since these would convert an
infinite amount of entropy into stored information and create mathematical
difficulties. These difficulties are avoided in (2) by the non-degeneracy of
the observation noise terms ζ and W .

With the addition of observations, we could modify our two-component
universe, to include a third physical component represented by the obser-
vation process Y . This would involve a modified heat bath that accounted
for the observation noise, W , as well as that in the signal (V ). We defer
this approach until Section 4. For the moment we note that the signal
energy can be split (at least conceptually) into two components, as follows:

HX(Xt) =
1
2
(Xt − X̂t)′P−1

SS (Xt + X̂t) +
1
2
X̂ ′

tP
−1
SS X̂t.

Since the second of these is completely determined by the degrees of free-
dom that are observable through (Ys, s ∈ [0, t]), it is available to a demon
having access to Y . Thus the average energy of the signal, E(N(0, P (t))),
can be split into two parts: that available to the demon, E(N(0, P (t) −
Q(t))), which we shall call work, and that remaining, E(N(0, Q(t))), which
we shall call heat. In this sense the signal is cooled by the observations. If
the observations were to be turned off at time t (which could be achieved
by setting ΣW to zero) then the heat component of the signal energy would
converge towards the steady-state value of EX(t) in much the same way as
EX(t) itself. The cooled signal has entropy SX|Y (t), and this is less than
that of the uncooled signal by the quantity of information stored by the
filter, as shown by (27).

The signal now interacts with the heat bath in exactly the way it did
in the absence of observations. However, the interaction now sub-divides
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into two sub-interactions: one between the cooled signal and the heat bath,
and one between the demon and the heat bath. During fluctuations, both
sub-components of the signal can lose energy to the heat bath, but only
the cooled signal can gain energy from it. This is because energy coming
from the heat bath has entropy associated with it. (The signal gains en-
ergy from the heat bath through the small fluctuations of the Brownian
motion, V , and these are completely unpredictable from FY

t .) Of course,
there is also an interaction between the sub-components of the signal: as
t increases, the demon continues to ‘extract’ work from the cooled signal
as new observations become available. The combination of these effects
causes three energy flows, as follows.
Flow 1: Heat Bath to Cooled Signal. The average rate of flow of
energy can be found from the rate of change of energy of the cooled signal
with the work extraction process ‘turned off’. This can be achieved by
temporarily setting ΣW to zero.

Ė1(t) =
d

dt
E(N(0, Q(t)))|ΣW =0

= tr
(
A (Q(t)− PSS)P−1

SS

)
.

Flow 2. Cooled Signal to Demon. The demon continues to receive
new information, which allows it to ‘extract’ work from the cooled signal
at an average rate of

Ė2(t) = Ė1(t)−
d

dt
E(N(0, Q(t)))

=
1
2
tr
(
Q(t)ΣW Q(t)P−1

SS

)
.

Flow 3. Demon to Heat Bath. As described above, the demon loses
energy to the heat bath during fluctuations, but gets none back. This
results in a net flow of energy from the demon to the heat bath with
average rate

Ė3(t) = Ė2(t)−
d

dt
E(N(0, P (t)−Q(t)))

= tr
(
A(Q(t)− P (t))P−1

SS

)
.

The net average rate of outflow of energy from the heat bath is thus

Ė1(t)− Ė3(t) = ĖX(t),

which is unaltered by the existence of observations. The three energy flows
are shown in Figure 2.

The rates of change of entropy and information are as follows.
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In the Cooled Signal. The entropy is raised by the inflow of energy
(Flow 1) and lowered by the outflow (Flow 2). The net rate of change is

ṠX|Y (t) = ṠX(t) + Ḋ(t)− Ṡ(t).

In the Demon. The demon has associated with it an amount of infor-
mation C(t), but no entropy. This corresponds with the notion that the
energy available to it is work. C(t) is increased at rate Ṡ(t) by the supply of
new information, and reduced at rate Ḋ(t) by the dissipation of historical
information.
In the Heat Bath. Since the net average rate of change of energy in
the heat bath is unaltered by the existence of observations, so is its rate of
change of entropy.

The term Ḋ(t) in the equation for ṠX|Y (t) is the extra rate of entropy
increase of the cooled signal (as compared with the uncooled signal) and
is caused by the increased rate of inflow of energy from the heat bath:
Ė1(t) − ĖX(t). Thus the filter can be seen to be entropically efficient in
the sense that it dissipates information at exactly the rate of this (unavoid-
able) entropy increase. If the filter dissipated at a higher rate, it would
cause an additional increase in the entropy of the whole system, illustrat-
ing Landauer’s Principle; if it dissipated at a lower rate, it would retain
more information than strictly needed for estimating the future of X. In
order not to cause unnecessary entropy increase, the filter must retain all
information that is not held as entropy in other parts of the universe. In the
stationary state, this balance means that the filter dissipates information
at a rate governed by the fluctuations of HX(Xt).

The rate of change of entropy of the universe with observations differs
from that of the original universe by Ḋ(t) − Ṡ(t). If, during convergence
towards the invariant distribution, Ṡ(t) > Ḋ(t) for some t, then it is possible
for the entropy of the universe to decrease at time t. For example, this is
the case at t = 0 if the signal is initialised in its invariant distribution,
N(0, PSS), and the filter is initialised with near total ‘ignorance’, M �
CPSSC ′.

In the stationary state the overall rate of change of entropy is the same
as that in the original universe (zero), but energy and entropy/information
circulate around a loop comprising the heat bath, the cooled signal and
the demon. The demon is analogous to a perfect heat pump that cools the
signal, returning the extracted energy to the heat bath, and doing this with
no increase in entropy. It maintains the cooled signal at a temperature lower
than that of the heat bath, and this causes an inflow of heat (Flow 1), with
a resultant entropy increase. However, the entropy increase is countered
by the steady supply of new information, which, arising as it does within
the universe, constitutes a matching entropy decrease. This illustrates
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Landauer’s Principle in reverse. The entropic efficiency of the Kalman-
Bucy filter is a special case of the information conserving properties of
Bayesian estimators investigated in [21]. These issues are developed further
in [23].

In the foregoing analogy the demon is ‘passive’ in the sense that it con-
verts heat into work simply by observing the associated degrees of freedom.
Of course, having made such observations, it could in principle convert the
work into any other form of energy. An example of an ‘active’ demon,
which does this, arises in the following controlled variant of the partially
observed system of Section 1.

XU
t = ξ +

∫ t

0

(
AXU

s + Us

)
ds + BVt

(28)

Y U
t = CXU

0 + ζ +
∫ t

0

ΓXU
s ds + Wt,

where A, B, C, Γ, ξ, ζ, V and W are as in Section 1, and U is a continuous
causal control based on the partial observations, Y U . (This means that,
for each t, Ut must be measurable with respect to the σ-field generated by
(Y U

s , s ∈ [0, t]).)
The control is the means by which the active demon extracts work from

the controlled signal, its aim being to minimise the energy it leaves behind.
Thus the problem the demon faces is to choose the control U to minimise
the following cost functional

Jt(U) = EHX(XU
t ) (29)

at each time t. This is a special case of the so-called linear quadratic
Gaussian optimal control problem. (See, for example, [6].) It turns out that
the minimum cost is equal to the heat component of the signal energy in
the passive analogy, E(N(0, Q(t))), and that this cost can be approximately
realised by controls of the form

Ut = −KX̂U
t (30)

for large K, where X̂U
t is the (Y U

s , s ∈ [0, t])-conditional mean of XU
t .

The (Y U
s , s ∈ [0, t])-conditional distribution of X̂U

t is the Gaussian dis-
tribution N(X̂U

t , Q(t)), where Q is as given in (3), and

X̂U
0 =

(
P−1

i + C ′M−1C
)−1

C ′M−1Y U
0 ,

(31)

X̂U
t = X̂U

0 +
∫ t

0

(
(A−Q(s)ΣW ) X̂U

s + Us

)
ds +

∫ t

0

Q(s)Γ′ dY U
s ,
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This follows from the following decompositions:

XU
t =

∫ t

0

exp(A(t− s))Us ds + Xt

Y U
t =

∫ t

0

∫ s

0

Γ exp(A(s− r))Ur dr ds + Yt,

where X and Y are as in Section 1.
The controlled signal can also be decomposed into the observable and

unobservable components X̂U and X̃U (:= XU − X̂U ). The evolution of
the observable component is given by (31), and that of the unobservable
component is as follows:

X̃U
t = X̃U

0 +
∫ t

0

(A−Q(s)ΣW )X̃U
s ds + BVt −

∫ t

0

Q(s)Γ′ dWs.

From this it can be seen that the unobservable component is also uncon-
trollable, in the sense that it does not depend on U . It has mean zero
and covariance matrix Q(t) at time t. The observable component can be
made arbitrarily small by the choice of control (30) with sufficiently large
K. Thus the effect of the control (30) is to drive the observable degrees of
freedom of XU towards zero, while not affecting the unobservable degrees
of freedom. The active demon makes immediate use of newly incoming
information to extract the associated energy. The fact that it is able to
do this with a control that depends on (Ys, s ∈ [0, t]) only through X̂U

t

illustrates, once again, the redundancy of the dissipated information, D(t).
Because of the circulation of energy in both passive and active analogies,

we might expect the stationary state of the universe with observations to be
a non-equilibrium state, even if the signal process X is self adjoint. To make
these ideas precise we introduce, in the next section, a second statistical
mechanical analogy in which the filter is a separate physical component
capable of holding energy in its own right.

4 Interactive Statistical Mechanics

The physical analogy, developed in Section 2 for the signal alone, can also
be applied to the joint, 2n-dimensional process (X, X̂). In order to define
entropy production for this we require the observation noise covariance
matrix, ΣW , to be strictly positive definite. In particular, this requires
(unlike the analogies in Section 3) that the dimension of the observation,
d, be the same as that of the signal, n. The joint process then has the
invariant distribution N(0, PJ), with 2n× 2n covariance matrix

PJ =
[

PSS PSS −QSS

PSS −QSS PSS −QSS

]
, (32)
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where, QSS is the stationary covariance matrix of the filter; this satisfies
the algebraic Riccati equation:

AQSS + QSSA′ + ΣV −QSSΣW QSS = 0;

the Hamiltonian for (X, X̂) is

HJ(x, x̂) =
1
2
[

x′ x̂′
]
P−1

J

[
x
x̂

]
. (33)

The joint process can be considered as describing a statistical mechanical
system interacting with a unit temperature heat bath in the same way
as was X in Section 2. This interaction forces the system towards its
stationary state thus maximising the entropy of the universe comprising
the joint process and the heat bath. The stationary state in this analogy is
a non-equilibrium state, regardless of whether or not the signal, X, is self-
adjoint. This is because of the interaction between the two components,
X and X̂. We first investigate this interaction when the system is in its
stationary state.

The joint process is a 2n-vector, Gaussian process with drift coefficient
f(θ) = AJθ and diffusion matrix ΣJ , where

AJ =
[

A 0
QSSΣW A−QSSΣW

]
and ΣJ =

[
ΣV 0
0 QSSΣW QSS

]
.

At each time t, (Xt, X̂t) has mean zero, and the covariance matrix PJ of
(32). It can be expressed in time-reversed form as a 2n-vector Gaussian
process with drift coefficient ĀJθ, and diffusion matrix ΣJ , where

ĀJ = −AJ − ΣJP−1
J .

(This follows from Lemma 2.1.) The rate of entropy production for the
joint process can be found in the same way as was RX in Section 2. In fact

RJ =
1
2
tr
(
(AJ − ĀJ)′Σ−1

J (AJ − ĀJ)PJ

)
. (34)

Since this is a rate of entropy production in a stationary state, it is also
the joint rate of entropy flow in this state.

The key to isolating the interactive component of this flow is the fact
that both X and X̂ are autonomously Markov. This is clearly true of X,
but also true of X̂ since the latter can be expressed autonomously as shown
in (5). The rate of entropy flow in X alone, RX , is given by (16) in the
stationary state, and that in X̂ alone, RX̂ , is given by the following:

RX̂ =
1
2
tr
(
(A− ĀX̂)′ (QSSΣW QSS)−1 (A− ĀX̂)(PSS −QSS)

)
, (35)



INFORMATION AND ENTROPY FLOW 22

where
ĀX̂ = −A−QSSΣW QSS (PSS −QSS)−1

.

We can now define a rate of interactive entropy flow:

RI := RJ −RX −RX̂

=
1
2
tr(ΣW QSS) +

1
2
tr
(
ΣV

(
Q−1

SS − P−1
SS

))
(36)

= ṠSS + ḊSS ,

where ṠSS and ḊSS are the steady-state values of the information supply
and dissipation processes of Section 3. (Of course, these are equal.) The
rate of interactive entropy flow is thus the total flow rate of information to
and from the information store.

Since X and X̂ are Markov processes in their own right, they separately
describe statistical mechanical systems interacting with unit temperature
heat baths. The marginal interactions are governed by the Hamiltonians
HX of (7) and HX̂ , defined by:

HX̂(x̂) =
1
2
x̂′(PSS −QSS)−1x̂. (37)

We can also identify the conditional Hamiltonians

HX|X̂(x, x̂) = HJ(x, x̂)−HX̂(x̂)

HX̂|X(x̂, x) = HJ(x, x̂)−HX(x).

The Hamiltonian of the joint system can be expressed as the sum of three
components:

HJ(x, x̂) = HX|X̂(x, x̂) + eC(x, x̂) + HX̂|X(x̂, x), (38)

where eC is a component of energy common to the signal and the filter
(defined by (38)). The sum of the first two components in (38) is the
Hamiltonian of the signal, HX , and the sum of the last two components is
that of the filter, HX̂ .

HX|X̂ can be expressed in the following form:

HX|X̂(x, x̂) =
1
2
(x− x̂)′Q−1

SS(x− x̂),

and is, therefore, determined by the ‘conditional signal’, X̃ := X − X̂.
This is also a Markov process in its own right, and evolves according to the
equation

X̃t = X̃0 +
∫ t

0

(A−Q(s)ΣW )X̃s ds + BVt −
∫ t

0

Q(s)Γ′ dWs. (39)
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It describes a statistical mechanical system with Hamiltonian

HX̃(x̃) =
1
2
x̃′Q−1

SS x̃,

that also interacts with a unit temperature heat bath.
The joint statistical mechanical system, described by (X, X̂), can thus

be thought of as comprising two ‘physically distinct’ subsystems: the con-
ditional signal, with associated variable X̃t and Hamiltonian HX̃ , and the
filter, with associated variable X̂t and Hamiltonian HX̂ . By ‘physically dis-
tinct’, we mean that the subsystems satisfy three conditions: (i) their state
variables are autonomously Markov; (ii) energy is additive—the Hamilto-
nian of the joint system is the sum of the Hamiltonians of the two subsys-
tems; and (iii) entropy is additive—since X̃t and X̂t are independent, the
entropy of the joint system is the sum of the entropies of the subsystems.

The conditional signal has average energy

EX̃(t) = EHX̃(X̃t) =
1
2
tr(Q(t)Q−1

SS);

and this evolves as follows:

ĖX̃(t) =
1
2
tr
(
ΣV Q−1

SS

)
+ tr

(
AQ(t)Q−1

SS

)
− 1

2
tr
(
Q(t)ΣW Q(t)Q−1

SS

)
. (40)

It forms one component of the average signal energy, EX(t) (as defined
in (9)), the other component of which is the average common energy,
EeC(Xt, X̂t). The evolution of EX(t) is not affected by the presence of
the filter; in particular, it would not be changed if ΣW were set to zero,
and so we may conclude that the third term on the right-hand side of (40)
represents an energy flow from the conditional signal to the common energy,
and hence to the filter. This is a delicate point. In trying to identify circu-
lar flows of energy between three or more subsystems, we must break one
of the connections between subsystems and observe the increase in energy
of the ‘upstream’ component, or the decrease in energy of the ‘downstream’
component. However, in changing a parameter of the system, we must be
careful that we do not alter dynamical aspects of the system other than
that intended. Clearly, setting ΣW to zero not only disconnects the filter
from the signal but also alters its interaction with the heat bath. Thus,
observing the filter energy with ΣW set to zero will not reveal the energy
inflow from the signal. However, observing the energy of the conditional
signal in the same circumstances does. The fact that the marginal statis-
tical mechanics of the signal are not affected by the value of ΣW is crucial
here.

The filter itself has average energy EX̂(t), given by

EX̂(t) = EHX̂(X̂) =
1
2
tr
(
(P (t)−Q(t))(PSS −QSS)−1

)
;
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and this evolves as follows:

ĖX̂(t) =
1
2
tr
(
Q(t)ΣW Q(t)(PSS −QSS)−1

)
+tr

(
A(P (t)−Q(t))(PSS −QSS)−1

)
.

We can thus identify the following three energy flow rates:
Flow 4. Heat Bath to Conditional Signal.

Ė4(t) =
1
2
tr
(
ΣW Q−1

SS

)
+ tr

(
AQ(t)Q−1

SS

)
;

Flow 5. Conditional Signal to Filter.

Ė5(t) =
1
2
tr
(
Q(t)ΣW Q(t)Q−1

SS

)
;

Flow 6. Filter to Heat Bath.

Ė6(t) =
1
2
tr
(
Q(t)ΣW Q(t)

(
Q−1

SS − (PSS −QSS)−1
))

−tr
(
A(P (t)−Q(t))(PSS −QSS)−1

)
.

In the stationary state, all three energy flows have the common rate

ĖSS =
1
2
tr(ΣW QSS) = ṠSS .

Since all three components of the universe have unit temperature, the en-
ergy flows are accompanied by equal entropy flows. In particular, the
energy flow from the conditional signal to the filter is associated with an
entropy flow of the same rate as that of the information supply, identified
in Section 3. The flow of energy in the stationary state is not driven by
temperature gradients and does not cause any increase in overall entropy,
and so is ‘physically reversible’.

The physical analogy here is distinct from that of Section 3 in that the
energy flows of the latter are driven by the supply of observation infor-
mation, whereas the flows here are driven by the nature of the interaction
between X and X̂, and do not depend on any distinction being made be-
tween entropy and observable information.

The joint Hamiltonian can also be expressed as the sum of that of the
signal, HX , and that of the ‘conditional filter’, HX̂|X . The latter can be
expressed in the form

HX̂|X(x̂, x) =
1
2
x̆′
(
Q−1

SS − P−1
SS

)−1
x̆,

where
x̆ = P−1

SS x−Q−1
SS(x− x̂).
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This is determined by the process X̆ := P−1
SS X −Q−1

SSX̃.
In the stationary state, X̆ is a Markov process in its own right, and its

value at time t is independent of that of X, and so we can also decompose
the joint system into subsystems associated with X and X̆. (Note, however,
that this is not, in general, true away from the stationary state.) Thus,
in the stationary state, we can identify a flow of energy from the signal
to the conditional filter in the same way that the flow of energy from the
conditional signal to the filter was identified above. (This involves setting
ΣV to zero.) This energy flow has the same rate as the others, ĖSS , and
leads to the symmetrical system shown in Figure 3. The joint system has
two ‘internal’ energy flow points (ie. points of flow not involving the heat
bath), each of which has an associated entropy flow of rate ṠSS ; the sum
of these is equal to the rate of interactive entropy flow RI , as defined in
(36).

In the presence of observations, we can make the distinction between
entropy and information that was made in Section 3. The entropy of the
joint system in the presence of observations then becomes that of the con-
ditional signal,

SX̃,SS =
n

2
(1 + log(2π)) +

1
2

log |QSS |,

and its information content becomes

SX̂,SS =
n

2
(1 + log(2π)) +

1
2

log |PSS −QSS |.

This is made up of two components: the information stored on the signal

CSS =
1
2

log
∣∣PSSQ−1

SS

∣∣ ,
and the ‘residual’ information

SX̆,SS =
n

2
(1 + log(2π)) +

1
2

log
∣∣QSS

(
Q−1

SS − P−1
SS

)
QSS

∣∣ .
As in Section 3, we call the energy of the conditional signal heat, and that
of the filter work. Heat is converted into work at rate ĖSS by the arrival
of new observation information. It is converted back into heat when it is
returned to the heat bath by the filter. The filter uses its information dissi-
pation process, which has exactly the correct rate, to provide the necessary
entropy. This provides a quantitative example of Landauer’s Principle, dis-
tinct from that in Section 3. There, it was the flow of energy across the
temperature gradient between the heat bath and the filter that caused the
entropy increase term ḊSS , whereas in the analogy of this section there are
no temperature gradients.
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Many of the properties of entropy production, discussed in the remarks
following its definition in Section 2, are inherited, in the stationary state, by
interactive entropy flow. In particular, the interactive entropy flow of the
time-reversed joint process (X, X̂) is the same as that of the forward-time
joint process. It turns out that the components of the time-reversed joint
process can be thought of as being the signal and filter processes of a dual
problem, in which information supply and dissipation exchange roles. The
second physical analogy for this dual problem is then the physical reversal
of that of the original. These duality ideas are developed further for linear
filters in [23], and for nonlinear filters in [24].

5 Conclusions and Further Work

This article has explored the information flows associated with continuous-
time Kalman-Bucy filters, and connected them with the entropy flows oc-
curing in non-equilibrium statistical mechanical systems. It has shown via
physical analogies that a law of non-decrease of entropy need not apply to
such systems in the presence of observations that continue to supply new
information. Furthermore, by introducing a concept of interactive entropy
flow, it has provided a framework for the study of interacting statistical
mechanical systems.

The results concern systems with finite-dimensional mesoscopic descrip-
tions, but they can be extended to situations where the signal space is an
infinite-dimensional Hilbert space, and the observation space is a finite- or
infinite-dimensional Hilbert space. The necessary ingredients for such a
development are contained, for example, in [22]. The generalisation of the
Girsanov theorem, which was used to derive the information flow rates, to
the infinite-dimensional Hilbert space is contained in the work of Yor, [32],
where the martingale problem for certain infinite-dimensional stochastic
differential equations is developed. In situations of interest in Physics one
may consider the infinite-dimensional Ornstein-Uhlenbeck process evolv-
ing, for example, in H−1(Λ), where Λ is a bounded set in IR2. (See, for
example, [13] and [3].)

Like all Bayesian estimators, the Kalman-Bucy filter is information con-
serving in the manner described in [21], and, because of this, it is also
entropically efficient in the physical analogies: it achieves the maximum
possible reduction in entropy from a given supply of observations, and
stores no more information than is strictly necessary to do this. This en-
tropic efficiency manifests itself in a second analogy as physically reversible
dynamics for the system described by the joint signal-filter process.

The fact that observations can reduce entropy is, essentially, an ‘inverse
Landauer Principle’. Our analogies provide quantitative examples of both
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‘regular’ and ‘inverse’ Landauer’s Principles.
These ideas can also be further developed for linear, time-inhomogeneous,

degenerate systems and to nonlinear systems. (See [23] and [24], where an
interactive analogy is introduced.) The physical analogies are particularly
useful in the nonlinear case since they can be used as the basis of an infor-
mation theoretic Lyapunov theory for nonlinear filters.
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