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1. Introduction. In this paper, we consider the problem of optimal sequential
vector quantization of stationary Markov sources. In the traditional rate distortion
framework, the well-known result of Shannon shows that one can achieve entropy rates
arbitrarily close to the rate distortion function for suitably long lossy block codes [9].
Unfortunately, long block codes imply long delays in communication systems. In par-
ticular, control applications require causal coding and decoding schemes.

These concerns are not new, and there is a sizable body of literature addressing
these issues. We shall briefly mention a few key contributions. Witsenhausen [24]
looked at the optimal finite horizon sequential quantization problem for finite state
encoders and decoders. His encoder had a fixed number of levels. He showed that
the optimal encoder for a kth order Markov source depends on at most the last k
symbols and the present state of the decoder’s memory. Walrand and Varaiya [23]
looked at the infinite horizon sequential quantization problem for sources with finite
alphabets. Using Markov decision theory, they were able to show that the optimal
encoder for a Markov source depends only on the current input and the current state
of the decoder. Gaarder and Slepian [12] look at sequential quantization over classes
of finite state encoders and decoders. Though they lay down several useful definitions,
their results, by their own admission, are incomplete. Other related works include a
neural network based scheme [17] and a study of optimality properties of codes in
specific cases [3], [10]. Some abstract theoretical results are given in [19].
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A formulation similar in spirit to ours (insofar as it aims to minimize a “La-
grangian distortion measure” described below) is studied in [7], [8]. They show em-
pirically that one can make gains in performance by entropy coding the codewords.
In [7] the entropy constrained vector quantization problem for a block is formulated
and a Max–Lloyd-type algorithm is introduced. In [8] they introduce the conditional
entropy constrained vector quantization problem and show that one should use con-
ditional entropy coders when the codewords are not independent from block to block.
In these papers there is more emphasis on synthesizing algorithms and less emphasis
on proving rigorously the optimality of the schemes proposed. Along with this work
there is a large literature on differential predictive coding, where one encodes the
innovation. Other than the Gauss–Markov case, though, it is not apparent how one
may prove the optimality of such innovation coding schemes. Herein we emphasize,
through the dynamic programming formulation, the optimality properties of the se-
quential quantization scheme. This leads the way for the application of many powerful
approximate dynamic programming tools.

In this paper we do not impose a fixed number of levels on the quantizer. The
aim is to somehow jointly optimize the entropy rate of the quantized process (in order
to obtain a better compression rate) as well as a suitable distortion measure. The
traditional rate distortion framework [9] calls for the minimization of the former with
a hard constraint on the latter. We shall, however, consider the analytically more
tractable Lagrangian distortion measure of [7], [8], which is a weighted combination
of the two. We approach the problem from a stochastic control viewpoint, treating
the choice of the sequential quantizer as a control choice. The correct “state space”
then turns out to be the space of conditional laws of the underlying process given
the quantizer outputs, these conditional laws serving as the “state” or “sufficient
statistics.” The “state dynamics” is then given by the appropriate nonlinear filter.
While this is very reminiscent of the finite state quantizers studied, e.g., in [16], the
state space here is not finite, and the state process has the familiar stochastic control
interpretation as the output of a nonlinear filter. We then consider the “separated”
or “certainty equivalent” control problem of controlling this nonlinear filter so as to
minimize an appropriately transformed Lagrangian distortion measure. This problem
can be analyzed in the traditional dynamic programming framework. This in turn
can be made a basis for computational schemes for near-optimal code design.

To summarize, the main contributions of this paper are as follows.
(i) We formulate a stochastic control problem equivalent to the optimal vector

quantization problem. In the process, we make precise the passage from the
source output to its encoded version in a manner that ensures the well-
posedness of the control problem.

(ii) We underscore the crucial role of the process of conditional laws of the source
given the quantized process as the correct “sufficient statistics” for the prob-
lem.

(iii) We analyze the equivalent control problem by using the methodology of
Markov decision theory. This opens up the possibility of using the com-
putational machinery of Markov decision theory for code design.

Specifically, we consider a pair of a “state process” {Xn} and an associated “ob-
servation process” {Yn}, given by the dynamics

Xn+1 = g(Xn, ξn), Yn+1 = h(Xn, ξ
′
n),

where {ξn}, {ξ
′
n} are independently and identically distributed (i.i.d.) driving noise

processes. We quantize Yn+1 into its quantized version qn+1 that has a finite range and
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is selected based on the “history” qn
∆
= [q0, q1, . . . , qn]. The aim then is to minimize

the long run average of the Lagrangian distortion measure Rn = E[H(qn+1/q
n) +

λ||Yn− q̄n||
2], where λ > 0 is a prescribed constant, H(·/·) is the conditional entropy,

and q̄n is the best estimate of Yn given qn.
Let πn be the regular conditional law of Xn given qn for n ≥ 0. From πn,

one can easily derive the regular conditional law of Yn+1 given qn. Using Bayes’s
rule, {πn} can be evaluated recursively by a nonlinear filter. Furthermore, one can
express Rn as the expected value of a function of πn and a “control” process Qn

alone. ({Qn} is, in fact, the finite set depicting the range of the vector quantization
of Yn+1 prior to its encoding into a fixed finite alphabet.) This allows us to consider
the equivalent problem of controlling {πn} with the aim of minimizing the long run
average of the Rn recast as above. This then fits the framework of traditional Markov
decision theory and can be approached by dynamic programming. As usual, one has
to derive the dynamic programming equations for the average cost control problem by
a “vanishing discount” argument applied to the associated infinite horizon discounted
control problem for which the dynamic programming equation is easier to justify.

The structure of the paper is as follows. In section 2, we describe the sequential
quantization problem and introduce the formalism. Section 3 derives the equivalent
control problem. This is analyzed in section 4 using the formalism of Markov decision
theory.

2. Sequential quantization. This section formulates the sequential vector quan-
tization problem. In particular, it describes the passage from the observation process
to its quantized version, which in turn gets mapped into its encoding with respect to
a fixed alphabet. We also lay down our key assumptions which, apart from making
the coding scheme robust, also make its subsequent control formulation well-posed.
The section concludes with a precise statement of this “long run average cost” control
problem with partial observations that is equivalent to our original vector quantization
problem.

Throughout, for a Polish (i.e., complete separable metric) space X,P (X) will
denote the Polish space of probability measures on X with Prohorov topology [6,
Chapter 2]. For a random process {Zm}, set Zn = {Zm, 0 ≤ m ≤ n}, its past up to
time n. Finally, K will denote a finite positive constant, depending on the context.

Let {Xn} be an ergodic Markov process taking values in Rs, s ≥ 1, with an
associated “observation process” {Yn} taking values in Rd, d ≥ 1. ({Yn} thus is the
actual process being observed.) Their joint evolution is governed by a transition
kernel x ∈ Rs → p(x, dz, dy) ∈ P (Rs × Rd), as described below. We assume this
map to be continuous and further, that p(x, dz, dy) = ϕ(y, z|x)dzdy for a density
ϕ(·, ·|·) : Rd×Rs×Rs → R+ that is continuous and strictly positive, and furthermore,
ϕ(y, z|·) is Lipschitz uniformly in y, z.

The evolution law is as follows. For A ⊂ Rs, B ⊂ Rd Borel,

P (Xn+1 ∈ A, Yn+1 ∈ B/X
n, Y n) =

∫

A×B

p(Xn, dx, dy)

=

∫

A

∫

B

ϕ(y, z|Xn)dydz.

Following [13], we call the pair ({Xn}, {Yn}) a Markov source, though the terminology
“hidden Markov model” is more common nowadays. We impose on ({Xn}, {Yn}) the
condition of “asymptotic flatness” described next. We assume that these processes
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are given recursively by the dynamics

Xn+1 = g(Xn, ξn),(2.1)

Yn+1 = h(Xn, ξ
′
n),(2.2)

where {ξn}, {ξ
′
n} are i.i.d.Rm-valued (say) random variables independent of each other

and of X0, and g : Rs × Rm → Rs, h : Rs × Rm → Rd are prescribed measurable
maps satisfying

||g(x, y)||, ||h(x, y)|| ≤ K(1 + ||x||) ∀ y.

Equations (2.1) and (2.2) and the laws of {ξn}, {ξ
′
n} completely specify p(x, dz, dy),

and therefore the conditions we impose on the latter will implicitly restrict the choice
of the former.

Let ({Xn(x)}, {Yn(x)}), ({Xn(y)}, {Yn(y)}) denote the solutions to (2.1), (2.2)
for X0 = x, respectively, y with the same driving noises {ξn}, {ξ

′
n}. The assumption

of asymptotic flatness then is that there exist K > 0, 0 < β < 1, such that

E[||Xn(x)−Xn(y)||] ≤ Kβn||x− y||, n ≥ 0.

A simple example would be the case when g(x, u) = ḡ(x) + u, h(x, u) = h̄(x) + u
for all x, u, where ḡ : Rs → Rs is a contraction with respect to some equivalent
norm on Rs. This covers, e.g., the usual linear quadratic Gaussian (LQG) case when
the state process is stable. Another example would be a discretization of continuous
time asymptotically flat processes considered in [1], where a Lyapunov-type sufficient
condition for asymptotic flatness is given. This assumption, one must add, is not
required for our formulation of the optimization problem per se but will play a key
role in our derivation of the dynamic programming equations in section 4.

Let
∑

= {α1, α2, . . . , αN} be an ordered set that will serve as the alphabet for our
vector quantizer. Let {qn} denote the

∑

-valued process that stands for the “vector
quantized” version of {Yn}. The passage from {Yn} to {qn} is described below.

Let D denote the set of finite nonempty subsets of Rd with cardinality at most
N ≥ 1, satisfying the following.

(†) There exist M > 0 (“large”) and 4 > 0 (“small”) such that
(i) x ∈ A ∈ D implies ||x|| ≤M,
(ii) x = [x1, . . . , xd], y = [y1, . . . , yd] for x, y ∈ A ∈ D, x 6= y, implies |xi−yi| > 4

for all i.
We endow D with the Hausdorff metric which renders it a compact Polish space.

For A ∈ D, let lA : Rd → A denote the map that maps x ∈ Rd to the element
of A nearest to it with reference to the Euclidean norm || · ||, any tie being resolved
according to some fixed priority rule. Let iA : A→

∑

denote the map that first orders
the elements {a1, . . . , am} of A lexicographically and then maps them to {α1, . . . , αm}
preserving the order.

Let
∑∞

=
∑

×
∑

× · · · (i.e., a one-sided countably infinite product. Analogous

notation will be used elsewhere.) At each time n, a measurable map ηn :
∑n+1

→ D

is chosen. With Qn
∆
= ηn(qn), one sets

qn+1 = iQn(lQn(Yn+1)).

This defines {qn} recursively as the quantized process that is to be encoded and
transmitted across a communication channel.
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The explanation of this scheme is as follows. In case of a fixed quantizer, the
finite subset of Rd to which the signal gets mapped can itself be identified with the
alphabet

∑

. In our case, however, this set will vary from one instant to another and
therefore must be mapped to a fixed alphabet

∑

in a uniquely invertible manner.
This is achieved through the map iA. Assuming that the receiver knows ahead of
time the deterministic maps {nn(·)} (later on we argue that a single fixed η(·) will
suffice), she can reconstruct Qn as ηn(qn) on having received qn by time n. In turn,
she can reconstruct i−1

Qn
(qn+1) = lQn(Yn+1) as the vector quantized version of Yn+1.

The main contribution of the condition (†) is to render the map A = {a1, . . . , am} ∈
D → {iA(a1), . . . , iA(am)} ∈

∑∗
continuous. Not only does this make sense from the

point of view of robust decoding, but it also makes the control problem we formulate
later well-posed.

As mentioned in the introduction, our aim will be to jointly optimize over the
choice of {ηn(·)} the average entropy rate of {qn} (≈ the average code length if
the encoding is done optimally) and the average distortion. The conventional rate
distortion theoretic formulation would be to minimize the average entropy rate

lim sup
n→∞

1

n

n−1
∑

m=0

E[H(qm+1/q
m)],

H(·) being the (conditional) Shannon entropy, subject to a hard constraint on the
distortion

lim sup
n→∞

1

n

n−1
∑

m=0

E[||Ym − q̄m||
2] ≤ K,

where q̄m = i−1
Qm−1

(qm) = lQm−1
(Ym).We shall, however, consider the simpler problem

of minimizing the Lagrangian distortion measure

lim sup
n→∞

1

n

n−1
∑

m=0

E[H(qm+1/q
m) + λ||Ym − q̄m||

2],(2.3)

where λ > 0 is a prescribed constant. One may think of λ as a Lagrange multiplier,
though, strictly speaking, such an interpretation is lacking given our arbitrary choice
thereof.

3. Reduction to the control problem. This section derives the “completely
observed” optimal stochastic control problem equivalent to the optimal vector quan-
tization problem described above. In this, we follow the usual “separation” idea of
stochastic control by identifying the regular conditional law of state given past ob-
servations (in our case, past encodings of the actual observations) as the new state
process for the completely observed control problem. The original cost function is
rewritten in an equivalent form that displays it as a function of the new state and
control processes alone. Under the assumptions of the previous section on the per-
missible vector quantization schemes (as reflected in our definition of D), the above
controlled Markov process is shown to have a transition kernel continuous in the ini-
tial state and control. Finally, a relaxation of this control problem is outlined, which
allows for a larger class of controls. This is purely a technical convenience required for
the proofs of the next section and does not affect our control problem in any essential
manner.



140 V. S. BORKAR, S. K. MITTER, AND S. TATIKONDA

Let πn(dx) ∈ P (Rs) denote the conditional law of Xn given qn, n ≥ 0. A standard
application of the Bayes rule shows that {πn} is given recursively by the nonlinear
filter

πn+1(dx
′) =

∫ ∫

I{iQn(lQn(y)) = qn+1}ϕ(y, x′|x)dydx′πn(dx)
∫ ∫ ∫

I{iQn(lQn(y)) = qn+1}ϕ(y, z|x)dydzπn(dx)
.(3.1)

By (†), l−1
A (i−1

A (a)) contains an open subset of Rd for any a,A. Given this fact and
the condition that ϕ(·, ·|·) > 0, it follows that the denominator above is strictly
positive, and hence the ratio is well defined. The initial condition for the recursion
(3.1) is π0 = the conditional law of X0 given q0. We assume q0 to be the trivial
quantizer, i.e., q0 ≡ 0, say, so that π0 = the law of X0. Thus defined, {πn} can
be viewed as a P (Rs)-valued controlled Markov process with a D-valued “control”
process {Qn}. To complete the description of the control problem, we need to define

our cost (2.3) in terms of {πn}, {Qn}. For this purpose, let ϕ̄(y|x)
∆
=
∫

ϕ(y, z|x)dz for
all (x, y) ∈ Rs ×Rd. Note that for a ∈

∑

,

P (qn+1 = a/qn) = E[E[I{qn+1 = a}/qn, Xn]/qn]

= E

[
∫

p(Xn, R
s, dy)I{qn+1 = a}/qn

]

=

∫

πn(dx)

∫

ϕ̄(y|x)I{iηn(qn)(lηn(qn)(y)) = a}dy

∆
= ha(πn, Qn),

where ha : P (Rs)×D → R is defined by

ha(π,A) =

∫

π(dx)fa(x,A)

with

fa(x,A) =

∫

ϕ̄(y|x)I{iA(lA(y)) = a}dy.

Also define

f̂(x,A) =

∫

ϕ̄(y|x)||y − lA(y)||2dy,

k(π,A) = −
∑

a

ha(π,A) log ha(π,A),

r(π,A) =

∫

π(dx)f̂(x,A),

where the logarithm is to the base 2. We assume fa(·, A), f̂(·, A) to be Lipschitz
uniformly in a,A. This would be implied in particular by the condition that ϕ̄(y/·)
be Lipschitz uniformly in y. Now (2.3) can be rewritten as

lim sup
n→∞

1

n

n−1
∑

m=0

E[k(πm, Qm) + λr(πm, Qm)].(3.2)

Strictly speaking, we should consider the problem of controlling {πn} given by
(3.1) so as to minimize the cost (3.2). We shall, however, introduce some further



SEQUENTIAL VECTOR QUANTIZATION OF MARKOV SOURCES 141

simplifications, thereby replacing (3.2) by an approximation of the same. Let 1
N
>

ε? > 0 be a small positive constant. For n ≥ 1, let P ?
n denote the simplex of probability

vectors in Rn which have each component bounded from below by ε?. That is,

P ?
n =

{

x = [x1, . . . , xn] ∈ Rn : xi ∈ [ε?, 1] ∀ i,
∑

i

xi = 1

}

.

Similarly, let

Pn =

{

x = [x1, . . . , xn] ∈ Rn : xi ∈ [0, 1] ∀ i,
∑

i

xi = 1

}

denote the entire simplex of probability vectors in Rn. Let Πn : Pn → P ?
n denote the

projection map. Let h(π,A) = [ha1
(π,A), . . . , ham(π,A)] for A = {a1, . . . , am} and

h̃(π,A) = Π|A|(h(π,A))

∆
= [h̃a1

(π,A), . . . , h̃am(π,A)].

Note that

| log h̃a(π,A)| ≤ − log ε? <∞ ∀ a, π,A.(3.3)

Finally, let

k̃(π,A) = −
∑

a

h̃a(π,A) log h̃a(π,A).

The control problem we consider is that of controlling {πn} so as to minimize the cost

lim sup
n→∞

1

n

n−1
∑

m=0

E[k̃(πn, Qn) + λr(πn, Qn)].(3.4)

Replacing k(·, ·) by k̃(·, ·) is a purely technical convenience to suit the needs of the
developments to come in section 4. We believe that it should be possible to obtain
the same results directly for (3.2), though possibly at the expense of a considerable
additional technical overhead.

We shall analyze this problem using techniques of Markov decision processes.
With this in mind, call {Qn} a stationary control policy if Qn = v(πn) for all n
for a measurable v : P (Rs) → D. The map v(·) itself may be referred to as the
stationary control policy by a standard abuse of notation. Let (π,A) ∈ P (Rs) ×
D → φ(π,A, dπ′) = P (P (Rs)) denote the transition kernel of the controlled Markov
process {πn}.

Lemma 3.1. The map φ(·, ·, dπ′) is continuous.

Proof. It suffices to check that for f ∈ Cb(P (Rs)), the map
∫

f(y)φ(·, ·, dy) is
continuous. Let (µn, An) → (µ∞, A∞) in P (Rs) × D. Then {µn} are tight, and
therefore, for any ε > 0, we can find a compact Sε ⊂ Rs such that µn(Sε) > 1 − ε
for n = 1, 2, . . . ,∞. Fix ε > 0 and Sε ⊂ Rs. By the Stone–Weierstrass theorem, any
f ∈ Cb(P (Rs)) can be approximated uniformly on Sε by f̄ ∈ Cb(P (Rs)) of the form

f̄(µ) = F

(
∫

f1dµ, . . . ,

∫

fldµ

)
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for some l ≥ 1, f1, . . . , fl ∈ Cb(R
s) and F ∈ Cb(R

l). Then

∣

∣

∣

∣

∫

f(y)φ(µn, An, dy)−

∫

f(y)φ(µ∞, A∞, dy)

∣

∣

∣

∣

≤ 4εK + sup
µ∈Sε

|f(µ)− f̄(µ)|+

∣

∣

∣

∣

∫

f̄(y)φ(µn, An, dy)−

∫

f̄(y)φ(µ∞, A∞, dy)

∣

∣

∣

∣

.

(3.5)
Let

νai(π,A) =

∫ ∫

fi(y)I{iA(lA(y)) = a}ϕ̄(y|x)dyπ(dx)

for a ∈
∑

, 1 ≤ i ≤ l. Direct verification leads to

∫

f̄(y)φ(π,A, dy) =
∑

a

ha(π,A)F

(

νa1(π,A)

ha(π,A)
, . . . ,

νal(π,A)

ha(π,A)

)

.(3.6)

Note that for all a,

I{iAn(lAn(y)) = a} → I{iA∞(lA∞(y)) = 0} almost everywhere (a.e.),

because this convergence fails only on the boundaries of the regions l−1
A∞

(b), b ∈ A∞,
which have zero Lebesgue measure. (These are the so called Voronoi regions in vector
quantization literature, viz., sets in the partition generated by the quantizer lA∞(·).)
Therefore, for all a, j,

fj(y)I{iAn(lAn(y)) = a} → fj(y)I{iA∞(lA∞(y)) = a} a.e.

If xn → x∞ in Rs, ϕ̄(y|xn) → ϕ̄(y|x∞) for all y. Then by Scheffe’s theorem [6, p. 26],

ϕ̄(y|xn)dy → ϕ̄(y|x∞)dy

in total variation. Hence for any a, j,

∫

fj(y)I{iAn(lAn(y)) = a}ϕ̄(y|xn)dy →

∫

fj(y)I{iA∞(lA∞(y)) = a}ϕ̄(y|x∞)dy.

That is, the map

(x,A) →

∫

fj(y)I{iA(lA(y)) = a}ϕ̄(y|x)dy

is continuous. It is clearly bounded. The continuity of νia(·, ·) follows. That of
ha(·, ·) follows similarly. The continuity of the sum in (3.6) then follows by one more
application of Scheffe’s theorem. Thus the last term on the right-hand side (RHS)
of (3.5) tends to zero as n → ∞. Since ε > 0 was arbitrary and the second term on
the RHS of (3.5) can be made arbitrarily small by a suitable choice of f̄ , the claim
follows.

We conclude this section with a description of a certain relaxation of this control
problem wherein we permit a larger class of control policies, the so-called wide sense
admissible controls used in [11]. Let (Ω,F , P ) denote the underlying probability
space, where, without loss of generality, we may suppose that F = VnFn for Fn =
σ(Xi, Yi, ξi, ξ

′
i, Qi, i ≤ n), n ≥ 0. Define a new probability measure P0 on (Ω,F) as
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follows. Let ψn :
∑n+1

×Rm → P (
∑

) denote the regular conditional law of qn+1

given (qn, Yn+1) for n ≥ 0. (Thus we are now allowing for a randomized choice of
Qn, i.e., Qn is not necessarily a deterministic function of (qn, Yn+1).) Let Γ ∈ P (

∑

)
be any fixed probability measure with full support. If, for n ≥ 0, Pn, P0n, we denote
the restrictions of P, P0 to (Ω,Fn), respectively, then Pn << P0n with

dPn
dP0n

=

n−1
∏

m=0

ψn(qm, Ym+1)({qm+1})

Γ({qm+1})
, n ≥ 1.

Then, under P0, {qn} are independent of {Xn, Yn, ξn, ξ
′
n} and are i.i.d. with law Γ.

We say that {Qn} is a wide sense admissible control if under P0, (qn+1, qn+2, . . .)
is independent of (qn, Qn) for n ≥ 0. Note that this includes {Qn} of the type
Qn = ηn(qn) for suitable maps {ηn(·)}.

It should be kept in mind that this allows explicit randomization in the choice
of {Qn}, whence the entropy rate expression in (3.2) or (3.4) is no longer valid.
Nevertheless, we continue with wide sense admissible controls in the context of (3.1)–
(3.4) because, for us, this is strictly a temporary technical device to facilitate proofs.
The dynamic programming formulation that we shall finally arrive at in section 4 will
permit us to return without any loss of generality to the apparently more restrictive
class of {Qn} we started out with.

4. The vanishing discount limit. This section derives the dynamic program-
ming equations for the equivalent “separated control problem” by extending the tra-
ditional “vanishing discount” argument to the present setup. Deriving the dynamic
programming equations for the long run average cost control of the separated control
problem has been an outstanding open problem in the general case. We solve it here
by using in a crucial manner the asymptotic flatness assumption introduced earlier. It
should be noted that this assumption was not required at all in the development thus
far and is included purely for facilitating the vanishing discount limit argument that
follows. In particular, it could be dispensed with altogether were we to consider the
finite horizon or infinite horizon discounted cost. For an alternative set of conditions
(also strong) under which the dynamic programming equations for the average cost
control under partial observations have been derived, see [21].

Our first step will be to modify the construction at the end of section 3 so as
to construct on a common probability space two controlled nonlinear filters with a
common control process but differing in their initial condition. This allows us to
compare discounted cost value functions for two different initial laws. In turn, this
allows us to show that their difference, with one of the two initial laws fixed arbitrarily,
remains bounded and equicontinuous with respect to a certain complete metric on the
space of probability measures, as the discount factor approaches unity. (This is where
one uses the condition of asymptotic flatness.) The rest of the derivation mimics the
classical arguments in this field.

For α ∈ (0, 1), consider the discounted control problem of minimizing

Jα(π0, {Qn}) = E

[

∞
∑

n=0

αn(k̃(πn, Qn) + λr(πn, Qn))

]

(4.1)

over Φ
∆
= the set of all wide sense admissible controls, with the prescribed π0. Define

the associated value function Vα : P (Rs) → R by

Vα(π0) = inf
Φ
J(π0, {Qn}).
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Standard dynamic programming arguments show that Vα(·) satisfies

Vα(π) = min
A

[

k(π,A) + λr(π,A) + β

∫

φ(π,A, dπ′)Vα(π′)

]

(4.2)

for π ∈ P (Rs). We shall arrive at the dynamic programming equation for our original
problem by taking a “vanishing discount” limit of a variant of (4.2). For this purpose,
we need to compare Vα(·) for two distinct values of its argument. In order to do so, we
first set up a framework for comparing (4.1) for two choices of π0 but with a “common”
wide sense admissible control {Qn}. This will be done by modifying the construction
at the end of the preceding section. Let (Ω,F , P0) be a probability space on which
we have (i) Rs-valued, possibly dependent random variables X̂0, X̃0, with laws π0, π

′
0,

respectively; (ii) Rm-valued i.i.d. random processes {ξm}, {ξ
′
m}, independent of each

other and of [X̂0, X̃0] with laws as in (2.1), (2.2); and (iii)
∑

-valued i.i.d. random
sequences {q̂m}, {q̃m} with law Γ. Also defined on (Ω,F , P0) is a D-valued process
{Qn} independent of ([X̂0, X̃0], {ξn}, {ξ

′
n}, {q̃n}) and satisfying the following. For

n ≥ 0, (q̂n+1, q̂n+2, . . .) is independent of Qn, q̂n. Let (X̂n, Ŷn), (X̃n, Ỹn) be solutions
to (2.1), (2.2) with X̂0, X̃0 as above. Without loss of generality, we may suppose that
F = VnFn with Fn = σ(X̂n, X̃n, Ŷ n, Ỹ n, q̂n, q̃n, Qn), n ≥ 0. Define a new probability
measure P on (Ω,F) as follows. If Pn, P0n denote the restrictions of P, P0, respectively,
to (Ω,Fn), n ≥ 0, then Pn << P0n with

dPn
dP0n

=

n−1
∏

m=0

ψn(q̂n, Ŷn+1)({q̂n+1, })ψ
′
n(q̃n, Ỹn+1)({q̃n+1})

Γ({q̂n+1})Γ({q̃n+1})
,

where the ψn (respectively, ψ′n) are the regular conditional laws of Qn(Ŷn+1) given
(q̂n, Ŷn+1) (respectively, of Qn(Ỹn+1) given (q̃n, Ỹn+1)) for n ≥ 0.

What this construction achieves is the identification of each wide sense admissible
control {Qn} for initial law π̂0 with one wide sense admissible control for π̃0. (This
identification can be many-one.) By a symmetric argument that interchanges the
roles of π̂0 and π̃0, we can identify each wide sense admissible control for π̃0 with
one for π̂0. Now suppose that Vα(π̂0) ≤ Vα(π̃0). Then for a wide sense admissible
control {Qn} that is optimal for π̂0 (existence of this follows by standard dynamic
programming arguments), we have

|Vα(π̂0)− Vα(π̃0)| = Vα(π̃0)− Vα(π̂0)

≤ Jα(π̃0, {Qn})− Jα(π̂0, {Qn})

≤ sup
Φ
|Jα(π̃0, {Qn})− Jα(π̂0, {Qn})|,

where we use the above identification. If Vα(π̂0) ≥ Vα(π̃0), a symmetric argument
applies. Thus we have proved the following lemma.

Lemma 4.1.

|Vα(π̂0)− Vα(π̃0)| ≤ sup
Φ
|Jα(π̂0, {Qn})− Jα(π̃0, {Qn})|.

Next, let P1(R
s) = {µ ∈ P (Rs) :

∫

||x||µ(dx) < ∞}, topologized by the (com-
plete) Vasserstein metric [20]

ρ(µ1, µ2) = inf E[||X − Y ||],
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where the infimum is over all joint laws of (X,Y ) such that the law of X (respectively,
Y ) is µ1 (respectively, µ2). We shall assume from now on that π0 ∈ P1(R

s). Given
the linear growth condition on g(·, y), h(·, y) of (2.1), (2.2), uniformly in y, it is then
easily deduced that E[||Xn||] <∞ for all n and therefore πn ∈ P1(R

s) almost surely
(a.s.) for all n. Thus we may and do view {πn} as a P1(R

s)-valued process. We then
have the following lemma.

Lemma 4.2. For π̂0, π̃0 ∈ P1(R
s) and α > 0, |Vα(π̂0)− Vα(π̃0)| ≤ Kρ(π̂0, π̃0).

Proof. Let {π̂n}, {π̃n} be solutions to (3.1) with initial conditions π̂0, π̃0, re-
spectively, and a “common” wide sense admissible control {Qn} ∈ Φ. Then for
{X̂n}, {X̃n} as above (with K denoting a generic positive constant that may change
from step to step)

|E[r(π̂n, Qn)]− E[r(π̃n, Qn]|

= |E[f̂(X̂n, Qn)]− E[f̂(X̃n, Qn)]|

≤ E[|f̂(X̂n, Qn)− f̂(X̃n, Qn)|]

≤ KE[||X̂n − X̃n||]

(by the Lipschitz condition on f̂)

≤ KβnE[||X̂0 − X̃0||]

(by asymptotic flatness).
Now consider

|E[k̃(π̂n, Qn)]− E[k̃(π̃n, Qn]|.

Suppose that E[k̃(π̂n, Qn)] ≥ E[k̃(π̃n, Qn)]. Then

|E[k̃(π̂n, Qn)]− E[k̃(π̃n, Qn)]|

= E[k̃(π̂n, Qn)]− E[k̃(π̃n, Qn)]

= E

[

∑

a

h̃a(π̃n, Qn) log h̃a(π̃n, Qn)

]

− E

[

∑

a

h̃a(π̂n, Qn) log h̃a(π̂n, Qn)

]

= E

[

∑

a

(

h̃a(π̃n, Qn) log h̃a(π̃n, Qn)− h̃a(π̂n, Qn) log h̃a(π̃n, Qn)

+ h̃a(π̂n, Qn) log
h̃a(π̃n, Qn)

h̃a(π̂n, Qn)

)]

≤ E

[

∑

a

(h̃a(π̃n, Qn)− h̃a(π̂n, Qn)) log h̃a(π̃n, Qn))

]

(by Jensen’s inequality)

≤ E

[

∑

a

(fa(X̃n, Qn)− fa(X̂n, Qn)) log h̃a(π̃n, Qn))

]

≤ KE[||X̃n − X̂n||]

≤ KβnE[||X̃0 − X̂0||],

where we use (3.3) to arrive at the second to last inequality. A symmetric argument
works if E[k̃(π̂n, Qn)] ≤ E[k̃(π̃n, Qn)], leading to the same conclusion. Combining
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everything, we have

|E[k̃(π̃n, Qn) + λr(π̃n, Qn)]− E[k̃(π̂n, Qn) + λr(π̂n, Qn)]|

≤ KβnE[||X̂0 − X̃0||].

Therefore, by Lemma 4.1,

|Vα(π̂0)− Vα(π̃0)| ≤ K
∑

n

βnαnE[||X̂0 − X̃0||]

≤
K

1− β
E[||X̂0 − X̃0||].

For any ε > 0, we can render

E[||X̂0 − X̃0||] ≤ ρ(π̂0, π̃0) + ε

by suitably choosing the joint law of (X̂0, X̃0). Since ε > 0 is arbitrary, the claim
follows.

Fix π? ∈ P (Rs) and define V̄α(π) = Vα(π)−Vα(π?) for π ∈ P (Rs), α ∈ (0, 1). By
the above lemma, V̄α(·) is bounded equicontinuous. Letting α→ 1, we use the Arzela–
Ascoli theorem to conclude that V̄α(·) converges in C(P1(R

s)) to some V (·) along a
subsequence {α(n)}, α(n) → 1. By dropping to a further subsequence if necessary,
we may also suppose that {(1−α(n))Vα(n)(π

∗)}, which is clearly bounded, converges
to some γ ∈ R as n → ∞. These V (·), γ will turn out to be, respectively, the value
function and optimal cost for our original control problem.

Our main result is the following theorem.
Theorem 4.3.

(i) (V (·), γ) solve the dynamic programming equation

V (π) = min
u

(

k̃(π, u) + λr(π, u) +

∫

φ(π, u, dπ′)V (π′)− γ

)

.(4.3)

(ii) γ is the optimal cost, independent of the initial condition. Furthermore, a

stationary policy v(·) is optimal for any initial condition if

v(π) ∈ Argmin

(

k̃(π, ·) + λr(π, ·) +

∫

φ(π, ·, dπ′)V (π′)

)

∀ π.

In particular, an optimal stationary policy exists.

(iii) If v(·) is an optimal stationary policy and µ is a corresponding ergodic prob-

ability measure for {πn}, then

V (π) = k̃(π, v(π)) + λr(π, v(π)) +

∫

φ(π, v(π), dπ′)V (π′)− γ, µ-a.s.

Proof. For (i) rewrite (4.2) as

V̄α(π) = min
u

(

k̃(π, u) + λr(π, u) + α

∫

φ(π, u, dπ′)V̄α(π′)− (1− α)Vα(π?)

)

.

Let α→ 1 along {α(n)} to obtain (4.3).
For (ii) note that the first two statements follow by a standard argument which

may be found, e.g., in [15, Theorem 5.2.4, pp. 80–81]. The last claim follows from a
standard measurable selection theorem—see, e.g., [22].
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For (iii) note that the claim holds if “=” is replaced by “≤”. If the claim is false,
we can integrate both sides with respect to µ to obtain

γ <

∫

(k̃(π, v(π)) + λr(π, v(π)))µ(dπ).

The RHS is the cost under v(·), whereby this inequality contradicts the optimality of
v(·). The claim follows.

This result opens up the possibility of exploiting the computational machinery of
Markov decision theory (see, e.g., [2], [18], [21]) for code design.

Finally, we briefly consider the decoder’s problem. If transmission is error free,
the decoder can construct {πn} recursively given {qn} and the stationary policy v(·).
Then {Xn}, {Yn} may be estimated by the maximum a posteriori (MAP) estimates:

X̂n = argmax πn(·),

Ŷn = argmax

(
∫ ∫

I{iQn−1
(lQn−1

(·)) = qn+1}ϕ(·, z|x)dz πn−1(dx)

)

.

Suppose the decoder receives {qn} through a noisy but memoryless channel with input
alphabet

∑

and output alphabet another finite set O, with transition probabilities
p̃(i, j), i ∈ D, j ∈ O. Thus p̃(i, j) ≥ 0,

∑

l p̃(i, l) = 1 for all i, j. Let dn be the channel
output at time n.

The decoder can estimate (Xn, Yn) given dn, n ≥ 0, but this is no longer easy
because we cannot reconstruct {Qn} exactly in absence of his knowledge of {πn}, {qn}.
Thus he should estimate {qn} by {q̂n}, say (e.g., by maximum likelihood), given {dn}
and use these estimates in place of {qn} in the nonlinear filter for {πn}, giving an
approximation {π̂n} to {πn}. The guess for Qn then is v(π̂n), n ≥ 0.

5. Conclusions and extensions. In this paper we have considered the prob-
lem of optimal sequential vector quantization of a stationary Markov source. We have
formulated the problem as a stochastic control problem. We have used the method-
ology of Markov decision theory. Further, we have shown that the conditional law
of the source given the quantized past is a sufficient statistic for the problem. Thus
the optimal encoding scheme has a separated structure. The conditional laws are
given recursively by the nonlinear filter described in (3.1). The optimal policy is
characterized by Theorem 4.3.

The next step is to apply traditional Markov decision problem approximation
techniques to compute approximate schemes. If we have access to training data,
then we can use the tools of reinforcement learning. Here the idea is to parametrize
the value function space or the control law itself and apply stochastic approximation
techniques to optimize those parameters.

In general, the nonlinear filter recursion is very complicated. In the literature
people have approximated this by a linear prediction of the mean. These linear
predictive methods can be considered an approximation to the general nonlinear filter.
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